1887

Abstract

Echoviruses induce a wide spectrum of diseases in man, the most severe being meningitis. In neonates, however, a severe systemic infection can be observed, leading to death. Serum albumin is the most abundant protein in plasma and most interstitial fluids, and its functions include osmoregulation and transport and delivery of hydrophobic molecules such as fatty acids and steroids. The results of cold-synchronized one-step growth analysis of echovirus 7 infection and sucrose-gradient analysis of A-particles suggest that physiological concentrations of albumin block echovirus 7 infection by inhibiting uncoating. The blockage was reversible and was still effective when albumin was added 30 min after virus adsorption. Inhibition of uncoating was confirmed by using rhodanine, a known specific inhibitor of echovirus uncoating. After removal of the albumin blockage, addition of rhodanine perpetuated the inhibition. Serum and interstitial albumin concentrations may limit echovirus infection in vivo and thereby act as an extracellular determinant for echovirus tropism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-2-283
1999-02-01
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/2/0800283a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-2-283&mimeType=html&fmt=ahah

References

  1. Atmeh R. F., Shabsoug B. 1997; Detection and semiquantitation of albumin forms in fresh human plasma separated on gradient polyacrylamide gel by means of electroblotting on agarose gel matrix. Electrophoresis 18:2055–2058
    [Google Scholar]
  2. Bergelson J. M., Shepley M. P., Chan B. M., Hemler M. E., Finberg R.W. 1992; Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720
    [Google Scholar]
  3. Bergelson J. M., Chan M., Solomon K. R., St John N. F., Lin H., Finberg R.W. 1994; Decay-accelerating factor (CD55), a glycosyl-phosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proceedings of the National Academy of Sciences, USA 91:6245–6249
    [Google Scholar]
  4. Chang B. S., Mahoney R. R. 1995; Enzyme thermostabilization by bovine serum albumin and other proteins: evidence for hydrophobic interactions. Biotechnology and Applied Biochemistry 22:203–214
    [Google Scholar]
  5. Eggers H.J. 1977; Selective inhibition of uncoating of echovirus 12 by rhodanine. A study on early virus-cell interactions. Virology 78:241–252
    [Google Scholar]
  6. Eggers H. J., Koch M. A., Furst A., Daves G. D. Jr, Wilczynski J. J., Folkers K. 1970; Rhodanine: a selective inhibitor of the multiplication of echovirus 12. Science 167:294–297
    [Google Scholar]
  7. Fassi Fihri O., Mohanty J., Elazhary Y. 1993; Bovine serum albumin inhibits the adsorption of respiratory syncytial virus on MDBK cells. Veterinary Research 24:488–493 (in French)
    [Google Scholar]
  8. Gordon L. M., Curtain C. C., McCloyn V., Kirkpatrick A., Mobley P. W., Waring A. J. 1993; The amino-terminal peptide of HIV-1 gp41 interacts with human serum albumin. AIDS Research and Human Retroviruses 9:1145–1156
    [Google Scholar]
  9. Greve J. M., Forte C. P., Marlor C. W., Meyer A. M., Hoover-Litty H., Wunderlich D., McClelland A. 1991; Mechanisms of receptormediated rhinovirus neutralization defined by two soluble forms of ICAM-1. Journal of Virology 65:6015–6023
    [Google Scholar]
  10. Hung K. L., Tsai M. L., Chen W. C. 1995; Blood-brain barrier damage in children with central nervous system infections. Journal of the Formosan Medical Association 94:458–462
    [Google Scholar]
  11. Kaplan G., Peters D., Racaniello V. R. 1990; Poliovirus mutants resistant to neutralization with soluble cell receptors. Science 250:1596–1599
    [Google Scholar]
  12. Kragh-Hansen U. 1981; Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews 33:17–53
    [Google Scholar]
  13. Krone B., Lenz A., Heermann K. H., Seifer M., Lu X. Y., Gerlich W.H. 1990; Interaction between hepatitis B surface proteins and monomeric human serum albumin. Hepatology 11:1050–1056
    [Google Scholar]
  14. Long C. 1968 In Biochemists Handbook pp 842–1084 Edited by name Long C. London: E. & Spon F. N.:
    [Google Scholar]
  15. McFerran J. B., Dane D. S., Briggs E. M., Connor T., Nelson R. 1968; Further investigations on enterovirus-neutralising substances in human and animal sera. Journal of Pathology and Bacteriology 95:93–99
    [Google Scholar]
  16. Melnick J. L. 1996; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology 3rd edn pp 655–712 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  17. Nielsen H., Kragh-Hansen U., Minchiotti L., Galliano M., Brennan S. O., Tarnoky A. L., Franco M. H., Salzano F. M., Sugita O. 1997; Effect of genetic variation on the fatty acid-binding properties of human serum albumin and proalbumin. Biochimica et Biophysica Acta 1342:191–204
    [Google Scholar]
  18. Powell R. M., Ward T., Evans D. J., Almond J. W. 1997; Interaction between echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a secondary cellular factor in A-particle formation. Journal of Virology 71:9306–9312 corrigendum 72, 890
    [Google Scholar]
  19. Powell R. M., Schmitt V., Ward T., Goodfellow I., Evans D. J., Almond J. W. 1998; Characterisation of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. Journal of General Virology 79:1707–1713
    [Google Scholar]
  20. Rose H., Hennecke T., Kammermeier H. 1989; Is fatty acid uptake in cardiomyocytes determined by physicochemical fatty acid partition between albumin and membranes?. Molecular and Cellular Biochemistry 88:31–36
    [Google Scholar]
  21. Rueckert R. R. 1996; Picornaviridae: the viruses and their replication. In Fields Virology 3rd edn pp 609–654 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  22. Shafren D. R., Dorahy D. J., Ingham R. A., Burns G. F., Barry R. D. 1997a; Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. Journalof Virology 71:4736–4743
    [Google Scholar]
  23. Shafren D.R., Williams D.T., Barry R.D. 1997b; A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. Journal of Virology 71:9844–9848
    [Google Scholar]
  24. Smyth M., Tate J., Hoey E., Lyons C., Martin S., Stuart D. 1995; Implications for viral uncoating from the structure of bovine enterovirus. Nature Structural Biology 2:224–231
    [Google Scholar]
  25. Stang E., Kartenbeck J., Parton R. G. 1997; Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Molecular Biology of the Cell 8:47–57
    [Google Scholar]
  26. Storch H. 1993; Recombinant plasma proteins for therapeutic use - status and developmental trends. Beitrage zur Infusionstherapie 31:31–37 (in German)
    [Google Scholar]
  27. Tessier A. J., Dombi G. W., Bouwman D. L. 1996; Thermostability of purified human pancreatic a-amylase is increased by the combination of Ca2+ and human serum albumin. Clinica Chimica Acta 252:11–20
    [Google Scholar]
  28. Wang J., Ueno H., Masuko T., Hashimoto Y. 1994; Binding of serum albumin on tumor cells and characterization of the albumin binding protein. Journal of Biochemistry 115:898–903
    [Google Scholar]
  29. Ward T., Pipkin P. A., Clarkson N. A., Stone D. M., Minor P. D., Almond J. W. 1994; Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO Journal 13:5070–5074
    [Google Scholar]
  30. Ward T., Powell R. M., Pipkin P. A., Evans D. J., Minor P. D., Almond J. W. 1998; Role for β2-microglobulin in echovirus infection of rhabdomyosarcoma cells. Journal of Virology 72:5360–5365
    [Google Scholar]
  31. Zhao Y., Marcel Y.L. 1996; Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry 35:7174–7180
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-2-283
Loading
/content/journal/jgv/10.1099/0022-1317-80-2-283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error