1887

Abstract

RBP, a transcriptional repressor, is intricately involved in Epstein–Barr virus (EBV) transformation of human B cells. The EBV nuclear proteins EBNA-2, -3, -4 and -6 all utilize RBP to regulate the transcription of both cellular and viral genes. This study investigates the isoforms of the RBP protein in Burkitt’s lymphoma (BL) cells and in EBV-transformed lymphoblastoid cell lines (LCLs). Two-dimensional gel electrophoresis showed the presence of two different cellular isoforms of RBP; the molecular masses and isoelectric points of these two isoforms corresponded to RBP-Jκ and RBP-2N. Fractionation studies and green fluorescent protein (GFP)-tagged expression studies demonstrated that both RBP isoforms were located predominantly in the cell nucleus. Interestingly, GFP-tagged RBP-Jκ showed diffuse, uniform nuclear staining, whereas GFP-tagged RBP-2N showed a discrete nuclear pattern, demonstrating differences between the two isoforms. Within the nuclear fraction of EBV-negative BL cells, RBP existed both in a free form and bound to chromatin, whereas in LCLs the intranuclear RBP was predominantly chromatin-bound. Expression of the EBV latent proteins was found to lead to the sequestering of RBP from the cytoplasm into the cell nucleus and to an increase in the chromatin-bound forms of RBP.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-12-3217
1999-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/12/0803217.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-12-3217&mimeType=html&fmt=ahah

References

  1. Amakawa R., Jing W., Ozawa K., Matsunami N., Hamaguchi Y., Matsuda F., Kawaichi M., Honjo T. 1993; Human Jk recombination signal binding protein gene (IGKJRB): comparison with its mouse homologue. Genomics 17:306–315
    [Google Scholar]
  2. Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V., Pierson L. S.III. 1986; The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO Journal 5:433–440
    [Google Scholar]
  3. Artavanis-Tsakonas S., Matsuno K., Fortini M. E. 1995; Notch signaling. Science 268:225–232
    [Google Scholar]
  4. Ben-Bassat H., Goldblum N., Mitrani S., Goldblum T., Yoffey J. M., Cohen M. M., Bentwich Z., Ramot B., Klein E., Klein G. 1977; Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt like’ malignant lymphoma (line D.G.-75. International Journal of Cancer 19:27–33
    [Google Scholar]
  5. Brou C., Logeat F., Lecourtois M., Vandekerckhove J., Kourilsky P., Schweisguth F., Israel A. 1994; Inhibition of the DNA-binding activity of Drosophila suppressor of hairless and of its human homolog, KBF2/RBP-Jκ, by direct protein–protein interaction with Drosophila hairless. Genes & Development 8:2491–2503
    [Google Scholar]
  6. Busch H., Narayan K. S., Hamilton J. 1967; Isolation of nucleoli in a medium containing spermine and magnesium acetate. Experimental Cell Research 47:329–336
    [Google Scholar]
  7. Cushley W., Harnett M. M. 1993; Cellular signalling mechanisms in B lymphocytes. Biochemical Journal 292:313–332
    [Google Scholar]
  8. Dou S., Zeng X., Cortes P., Erdjument-Bromage H., Tempst P., Honjo T., Vales L. D. 1994; The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Molecular and Cellular Biology 14:3310–3319
    [Google Scholar]
  9. Furukawa T., Kimura K., Kobayakawa Y., Tamura K., Kawaichi M., Tanimura T., Honjo T. 1994; Genetic characterization of Drosophila RBP-Jκ (suppressor of hairless) as a neurogenic gene in adult PNS development. Japanese Journal of Genetics 69:701–711
    [Google Scholar]
  10. Gregory C. D., Rowe M., Rickinson A. B. 1990; Different Epstein–Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. Journal of General Virology 71:1481–1495
    [Google Scholar]
  11. Grossman S. R., Johannsen E., Tong X., Yalamanchili R., Kieff E. 1994; The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the Jκ recombination signal binding protein. Proceedings of the National Academy of Sciences, USA 91:7568–7572
    [Google Scholar]
  12. Hamaguchi Y., Matsunami N., Yamamoto Y., Honjo T. 1989; Purification and characterization of a protein that binds to the recombination signal sequence of the immunoglobulin Jκ segment. Nucleic Acids Research 17:9015–9026
    [Google Scholar]
  13. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  14. Johannsen E., Miller C. L., Grossman S. R., Kieff E. 1996; EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJκ in Epstein–Barr virus-transformed B lymphocytes. Journal of Virology 70:4179–4183
    [Google Scholar]
  15. Kannabiran C., Zeng X., Vales L. D. 1997; The mammalian transcriptional repressor RBP (CBF1) regulates interleukin-6 gene expression. Molecular and Cellular Biology 17:1–9
    [Google Scholar]
  16. Kawaichi M., Oka C., Shibayama S., Koromilas A. E., Matsunami N., Hamaguchi Y., Honjo T. 1992; Genomic organization of mouse Jκ recombination signal binding protein (RBP-Jκ) gene. Journal of Biological Chemistry 267:4016–4022
    [Google Scholar]
  17. Kienzle N., Young D., Silins S. L., Sculley T. B. 1996; Induction of pleckstrin by the Epstein–Barr virus nuclear antigen 3 family. Virology 224:167–174
    [Google Scholar]
  18. Krauer K. G., Kienzle N., Young D. B., Sculley T. B. 1996; Epstein–Barr nuclear antigen-3 and -4 interact with RBP-2N, a major isoform of RBP-Jκ in B lymphocytes. Virology 226:346–353
    [Google Scholar]
  19. Krauer K. G., Belzer D. K., Liaskou D., Buck M., Cross S., Honjo T., Sculley T. 1998; Regulation of interleukin-1β transcription by Epstein–Barr virus involves a number of latent proteins via their interaction with RBP. Virology 252:418–430
    [Google Scholar]
  20. Le Roux A., Kerdiles B., Walls D., Dedieu J. F., Perricaudet M. 1994; The Epstein–Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205:596–602
    [Google Scholar]
  21. Oka C., Nakano T., Wakeham A., de la Pompa J. L., Mori C., Sakai T., Okazaki S., Kawaichi M., Shiota K., Mak T. W., Honjo T. 1995; Disruption of the mouse RBP-Jκ gene results in early embryonic death. Development 121:3291–3301
    [Google Scholar]
  22. Plaisance S., Vanden Berghe W., Boone E., Fiers W., Haegeman G. 1997; Recombination signal sequence binding protein Jκ is constitutively bound to the NF-κB site of the interleukin-6 promoter and acts as a negative regulatory factor. Molecular and Cellular Biology 17:3733–3743
    [Google Scholar]
  23. Rickinson A. B., Kieff E. 1996; Epstein–Barr virus. In Fields Virology pp 2397–2446 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  24. Robertson E. S., Grossman S., Johannsen E., Miller C., Lin J., Tomkinson B., Kieff E. 1995; Epstein–Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein Jκ. Journal of Virology 69:3108–3116
    [Google Scholar]
  25. Sakai T., Furukawa T., Iwanari H., Oka C., Nakano T., Kawaichi M., Honjo T. 1995; Loss of immunostaining of the RBP-Jκ transcription factor upon F9 cell differentiation induced by retinoic acid. Journal of Biochemistry (Tokyo 118:621–628
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Sculley T. B., Walker P. J., Moss D. J., Pope J. H. 1984; Identification of multiple Epstein–Barr virus-induced nuclear antigens with sera from patients with rheumatoid arthritis. Journal of Virology 52:88–93
    [Google Scholar]
  28. Silins S. L., Sculley T. B. 1994; Modulation of vimentin, the CD40 activation antigen and Burkitt’s lymphoma antigen (CD77) by the Epstein–Barr virus nuclear antigen EBNA-4. Virology 202:16–24
    [Google Scholar]
  29. Tun T., Hamaguchi Y., Matsunami N., Furukawa T., Honjo T., Kawaichi M. 1994; Recognition sequence of a highly conserved DNA binding protein RBP-Jκ. Nucleic Acids Research 22:965–971
    [Google Scholar]
  30. Young D. B., Krauer K., Kienzle N., Sculley T. 1997; Both A type and B type Epstein–Barr virus nuclear antigen 6 interact with RBP-2N. Journal of General Virology 78:1671–1674
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-12-3217
Loading
/content/journal/jgv/10.1099/0022-1317-80-12-3217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error