1887
Preview this article:
Zoom in
Zoomout

Retrovirus receptors, Page 1 of 1

| /docserver/preview/fulltext/jgv/80/12/0803049-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-12-3049
1999-12-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/12/0803049.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-12-3049&mimeType=html&fmt=ahah

References

  1. Adkins H. B., Brojatsch J., Naughton J., Rolls M. M., Pesola J. M., Young J. A. 1997; Identification of the cellular receptor for subgroup E avian leukosis virus. Proceedings of the National Academy of Sciences, USA 94:11617–11622
    [Google Scholar]
  2. Agadjanyan M. G., Chattergoon M. A., Petrushina I., Bennett M., Kim J., Ugen K. E., Kieber-Emmons T., Weiner D. B. 1998; Monoclonal antibodies define a cellular antigen involved in HTLV infection. Hybridoma 17:9–19
    [Google Scholar]
  3. Akari H., Goto Y., Shinjo T. 1995; Detection of cellular membrane proteins on human T cell leukaemia virus type 1. Archives in Virology 140:375–382
    [Google Scholar]
  4. Albritton L. M., Tseng L., Scadden D., Cunningham J. M. 1989; A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane spanning protein and confers susceptibility to virus infection. Cell 57:659–666
    [Google Scholar]
  5. Albritton L. M., Bowcock A. M., Eddy R., Morton C., Farrerro L., Cavalli-Sforza L., Shows T., Cunningham J. H. 1992; The human cationic amino acid transporter: physical and genetic mapping to 13q12-q14. Genomics 12:430–434
    [Google Scholar]
  6. Albritton L. M., Kim J. W., Tseng L., Cunningham J. M. 1993; Envelope binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. Journal of Virology 67:2091–2096
    [Google Scholar]
  7. Andersen K. B. 1987; Cleavage fragments of the retrovirus surface protein gp70 during virus entry. Journal of General Virology 68:2193–2202
    [Google Scholar]
  8. Andersen K. B., Nexø B. A. 1983; Entry of murine retrovirus into mouse fibroblasts. Virology 125:85–98
    [Google Scholar]
  9. Atchison R. E., Gosling J., Monteclaro F. S., Franci C., Diglio L., Charo I. F., Goldsmith M. A. 1996; Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274:1924–1926
    [Google Scholar]
  10. Baba M., Snoeck R., Pauwels R., De Clercq E. 1988; Sulphated polysaccharides are potent and selective inhibitors of various enveloped viruses including herpes simplex virus, cytomegalovirus and human immunodeficiency virus. Antimicrobial Agents and Chemotherapy 32:1742–1745
    [Google Scholar]
  11. Ban J., Portetelle D., Altaner C., Horion B., Milan D., Krchnak V., Burny A., Kettman R. 1993; Isolation and characterisation of a 2·3-kilobase-pair cDNA fragment encoding the binding domain of the bovine leukaemia virus cell receptor. Journal of Virology 67:1050–1057
    [Google Scholar]
  12. Ban J., Truong A. T., Horion B., Altaner C., Burny A., Portetelle D., Kettman R. 1994; Isolation of the missing 5′ end of the encoding region of the bovine leukaemia virus receptor gene. Archives of Virology 138:379–383
    [Google Scholar]
  13. Bates P., Young J. A. T., Varmus H. E. 1993; A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74:1043–1051
    [Google Scholar]
  14. Bates P., Rong L., Varmus H. E., Young J. A., Crittenden L. B. 1998; Genetic mapping of the cloned subgroup A avian sarcoma and leukosis virus receptor gene to the TVA locus. Journal of Virology 72:2505–2508
    [Google Scholar]
  15. Battini J.-L., Rasko J. E. J., Miller A. D. 1999; A human cell surface receptor for xenotropic and polytropic murine leukaemia viruses: possible role in G protein-coupled signal transduction. Proceedings of the National Academy of Sciences, USA 96:1385–1390
    [Google Scholar]
  16. Benjamini E., Torres J. V., Werner L., Malley A. 1991; Isolation and characterisation of the neutralisable epitope of simian retrovirus type 1 (SRV-1) and of the cell receptor for the virus. Advances in Experimental Medical Biology 303:71–77
    [Google Scholar]
  17. Berger E. A. 1997; HIV entry and tropism: the chemokine receptor connection. AIDS 11 (Suppl. A:S3–S16
    [Google Scholar]
  18. Berger E. A., Doms R. W., Fenyö E.-M., Korber M. T. M., Littman D. R., Moore J. P., Sattentau Q. J., Schuitmaker H., Sodroski J., Weiss R. A. 1998; A new classification for HIV-1. Nature 391:240
    [Google Scholar]
  19. Bhat S., Spitalnik S. L., Gonzalez-Scarano F., Silderberg D. H. 1991; Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA 88:7131–7134
    [Google Scholar]
  20. Bhat S., Mettus R. V., Reddy E. P., Ugen K. E., Srikanthan V., Williams W. V., Weiner D. B. 1993; The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206–275. AIDS Research and Human Retroviruses 9:175–181
    [Google Scholar]
  21. Blair D. G., Dunn K. J., O’Hara B. M. 1988; Glycosylation inhibition alters retroviral receptor specificity on mouse cells. In Abstracts of Papers Presented at the 1988 Meeting on RNA Tumour Viruses pp 23 Edited by Goff S., Rosenberg N. Cold Spring Harbor, NY: Cold Spring Harbour Laboratory;
    [Google Scholar]
  22. Bolander F. F. Jr 1996; Requirements for mouse mammary tumour virus internalization in mouse mammary epithelial cells. Journal of General Virology 77:793–796
    [Google Scholar]
  23. Bolander F. F., Blackstone M. E. 1991; Tissue distribution of the cellular binding protein for the mouse mammary tumour virus. Journal of Molecular Endocrinology 7:169–174
    [Google Scholar]
  24. Boomer S., Eiden M., Burns C. C., Overbaugh J. 1997; Three distinct envelope domains variably present in subgroup B feline leukaemia virus recombinants mediate Pit1 and Pit2 receptor recognition. Journal of Virology 71:8116–8123
    [Google Scholar]
  25. Brojatch J., Naughton J., Rolls M. M., Zingler K., Young J. A. T. 1996; CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 87:845–855
    [Google Scholar]
  26. Butini L., De Fougerolles A. R., Vaccarezza M., Graziosi C., Cohen D. I., Montroni M., Springer T. A., Pantaleo G., Fauci A. S. 1994; Intercellular adhesion molecules (ICAM)-1, ICAM-2 and ICAM-3 function as counter receptors for lymphocyte function associated molecule 1 in human immunodeficiency virus-mediated syncytia formation. European Journal of Immunology 24:2191–2195
    [Google Scholar]
  27. Callebaut C., Krust B., Jacotot E., Hovanessian A. G. 1993; T cell activation antigen, CD26, as a cofactor for entry of HIV into CD4+ cells. Science 262:2045–2050
    [Google Scholar]
  28. Clapham P. R., Blanc D., Weiss R. A. 1991; Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 181:703–715
    [Google Scholar]
  29. Clapham P. R., McKnight A., Weiss R. A. 1992; Human immunodeficiency virus type 2 infection and fusion of CD4-negative human cell lines: induction and enhancement by soluble CD4. Journal of Virology 66:3531–3537
    [Google Scholar]
  30. Clements G. J., Price-Jones M. J., Stephens P. E., Sutton C., Schulz T. F., Clapham P. R., McKeating J. A., McClure M. O., Thomson S., Marsh M., Kay J., Weiss R. A., Moore J. P. 1991; The V3 loops of HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion?. AIDS Research and Human Retroviruses 7:3–16
    [Google Scholar]
  31. Connolly L., Zingler K., Young J. A. 1994; A soluble form of a receptor for subgroup A avian leukosis and sarcoma viruses (ASLV-A) blocks infection and binds directly to ASLV-A. Journal of Virology 68:2760–2764
    [Google Scholar]
  32. Crane S. E., Buzy J., Clements J. E. 1991; Identification of cell membrane proteins that bind Visna virus. Journal of Virology 65:6137–6143
    [Google Scholar]
  33. Dalgleish A. G., Beverley P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4(T4) antigen is an essential component of the receptor for the AIDS virus. Nature 312:763–767
    [Google Scholar]
  34. Dalziel R. G., Hopkins J., Watt N. J., Dutia B. M., Clarke H. A. K., McConnell I. 1991; Identification of a putative cellular receptor for the lentivirus visna virus. Journal of General Virology 72:1905–1911
    [Google Scholar]
  35. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  36. Deng H., Unutmaz D., Kewalramani V. N., Littman D. R. 1997; Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300
    [Google Scholar]
  37. De Parseval A., Lerner D. L., Borrow P., Willett B. J., Elder J. H. 1997; Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding. Journal of Virology 71:5742–5749
    [Google Scholar]
  38. Doms R. W., Piepert S. C. 1997; Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry. Virology 235:179–190
    [Google Scholar]
  39. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R., Doms R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR5, CKR3 and CKR2b as fusion cofactors. Cell 85:1149–1158
    [Google Scholar]
  40. Dragic T., Alizon M. 1993; Different requirements for membrane fusion mediated by the envelopes of HIV-1 and HIV-2. Journal of Virology 67:2355–2359
    [Google Scholar]
  41. Eiden M. V., Farrell K. B., Wilson C. A. 1996; Substitution of a single amino acid residue is sufficient to allow the human amphotropic murine leukaemia virus receptor to also function as a gibbon ape leukaemia virus receptor. Journal of Virology 70:1080–1085
    [Google Scholar]
  42. Endres M. J., Clapham P. R., Marsh M., Ahuja M., Turner J. D., McKnight A., Thomas J. F., Stoebenau-Haggarty B., Choe S., Vance P. J., Wells T. N. C., Power C. A., Sutterwala S. S., Doms R. W., Landau N. R., Hoxie J. A. 1996; CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87:745–756
    [Google Scholar]
  43. Fantini J., Cook D. G., Nathanson N., Spiltanik S. L., Gonzalez-Scarano F. 1993; Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proceedings of the National Academy of Sciences USA 90:2700–2704
    [Google Scholar]
  44. Feng Y., Broder C. C., Kennedy P. E., Berger E. 1996; HIV-1 entry co-factor: functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  45. Fu D. X., Haraguchi Y., Jinno A., Yang D., Hoshino H. 1998; Identification of membrane antigens important for adsorption of human T-cell leukaemia virus type 1. Research in Virology 149:383–392
    [Google Scholar]
  46. Gavalchin J., Fan N., Lane M. J., Papsidero L., Poeisz B. J. 1993; Identification of a putative receptor for HTLV-1 by a monoclonal antibody. Mab 34-23. Virology 194:1–9
    [Google Scholar]
  47. Gavalchin J., Fan P., Waterbury G., Corbett E., Faldasz B. D., Peshick S. M., Poiesz B. J., Papsidero L., Lane M. J. 1995; Regional localisation of the putative cell surface receptor for HTLV-1 to human chromosome 17q23.2-17q25.3. Virology 212:196–203
    [Google Scholar]
  48. Ghosh A. K., Bachmann M. H., Hoover E. A., Mullins J. I. 1992; Identification of a putative receptor for subgroup A feline leukaemia virus on feline T cells. Journal of Virology 66:3707–3714
    [Google Scholar]
  49. Gilbert J. M., Mason D., White J. M. 1990; Fusion of Rous sarcoma virus with host cells does not require exposure to low pH. Journal of Virology 64:5106–5113
    [Google Scholar]
  50. Golovkina T. V., Dzuris J., van den Hoogen B., Jaffe A. B., Wright P. C., Cofer S. M., Ross S. R. 1998; A novel membrane protein is a mouse mammary tumour virus receptor. Journal of Virology 72:3066–3071
    [Google Scholar]
  51. Guo M. M., Hildreth J. E. 1995; HIV acquires functional adhesion receptors from host cells. AIDS Research and Human Retroviruses 11:1007–1013
    [Google Scholar]
  52. Haraguchi Y., Takeuchi Y., Hoshino H. 1997; Inhibition of plating of human T cell leukaemia virus type 1 and syncytium inducing types of human immunodeficiency virus type 1 by polycations. AIDS Research and Human Retroviruses 13:1517–1523
    [Google Scholar]
  53. Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. 1991; Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253:320–323
    [Google Scholar]
  54. Hildreth J. E. 1998; Syncytium-inhibiting monoclonal antibodies produced against human T-cell lymphotropic virus type 1-infected cells recognise class II major histocompatibility complex molecules and block by protein crowding. Journal of Virology 72:9544–9552
    [Google Scholar]
  55. Hildreth J. E. K., Orentas R. J. 1989; Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 244:1075–1078
    [Google Scholar]
  56. Hildreth J. E. K., Subramanium A., Hampton R. A. 1997; Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology. Journal of Virology 71:1173–1180
    [Google Scholar]
  57. Hilkens J., van der Zeijst B., Buijis F., Kroezen V., Bleumink N., Hilgers J. 1983; Identification of a cellular receptor for mouse mammary tumour virus and mapping of its gene to chromosome 16. Journal of Virology 45:140–147
    [Google Scholar]
  58. Hosie M. J., Willett B. J., Dunsford T. H., Jarrett O., Niel J. 1993; A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. Journal of Virology 67:1667–1671
    [Google Scholar]
  59. Imai T., Yoshie O. 1993; C33 antigen and M38 antigen recognised by monoclonal antibodies inhibitory to syncytium formation by human T cell leukaemia virus type 1 are both members of the transmembrane 4 superfamily and associated with each other and with CD4 or CD8 in T-cells. Journal of Immunology 151:6470–6481
    [Google Scholar]
  60. Imai T., Fukudome K., Takagi S., Nagira M., Furuse M., Fukuhara N., Nishimura M., Hinuma Y., Yoshie O. 1992; C33 antigen recognised by monoclonal antibodies inhibitory to human T cell leukaemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53 and CD63. Journal of Immunology 149:2879–2886
    [Google Scholar]
  61. Johann S. V., Gibbons J. J., O’Hara B. 1992; GLVR1, a receptor for gibbon ape leukaemia virus is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. Journal of Virology 66:1635–1640
    [Google Scholar]
  62. Johann S. V., van Zeijl M., Cekleniak J., O’Hara B. 1993; Definition of a domain of GLVR1 which is necessary for infection by gibbon ape leukaemia virus and which is highly polymorphic between species. Journal of Virology 67:6733–6736
    [Google Scholar]
  63. Jolly P. E., Narayan O. 1989; Evidence for interference, coinfections and intertypic virus enhancement of infection by ovine-caprine lentiviruses. Journal of Virology 63:4682–4688
    [Google Scholar]
  64. Kavanaugh M. P., Miller D. G., Zhang W., Law W., Kozak S. L., Kabat D., Miller A. D. 1994; Cell-surface receptors for gibbon ape leukaemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proceedings of the National Academy of Sciences USA 91:7071–7075
    [Google Scholar]
  65. Kewalramani V. N., Panganiban A. T., Emerman M. 1992; Spleen necrosis virus, an avian immunosuppressive retrovirus, shares a receptor with the type D simian retroviruses. Journal of Virology 66:3026–3031
    [Google Scholar]
  66. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. 1991; Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728
    [Google Scholar]
  67. Koo H.-M., Gu J., Varela-Echavarria A., Ron Y., Dougherty J. P. 1992; Reticuloendotheliosis type C and primate type D oncoretroviruses are members of the same receptor interference group. Journal of Virology 66:3448–3454
    [Google Scholar]
  68. Koo H. M., Parthasarathi S., Ron Y., Dougherty J. P. 1994; Pseudotyped REV/SRV retroviruses reveal restriction to infection and host range within members of the same receptor interference group. Virology 205:345–351
    [Google Scholar]
  69. Kozak C. A., Albritton L. M., Cunningham J. 1990; Genetic mapping of a cloned sequence responsible for susceptibility to ecotropic murine leukaemia viruses. Journal of Virology 64:3119–3121
    [Google Scholar]
  70. Lazaro I., Naniche D., Signoret N., Bernard A. M., Marguet D., Klatzmann D., Dragic T., Alizon M., Sattentau Q. 1994; Factors involved in entry of the human immunodeficiency virus type 1 into permissive cells: lack of evidence of a role for CD26. Journal of Virology 68:6535–6546
    [Google Scholar]
  71. Li Q. X., Camerini D., Xie Y., Greenwald M., Kuritzkes D. R., Chen I. S. 1996; Syncytium formation by recombinant HTLV-II envelope glycoprotein. Virology 218:279–284
    [Google Scholar]
  72. Long D., Berson J. F., Cook D. G., Doms R. W. 1994; Characterisation of human immunodeficiency virus type 1 gp120 binding to liposome containing galactosylceramide. Journal of Virology 68:5890–5898
    [Google Scholar]
  73. Lundorf M. D., Pedersen F. S., O’Hara B., Pedersen L. 1999; Amphotropic murine leukaemia virus entry is determined by specific combinations of residues from receptor loops 2 and 4. Journal of Virology 73:3169–3175
    [Google Scholar]
  74. McClure M. O., Sommerfelt M. A., Marsh M., Weiss R. A. 1990; The pH independence of mammalian retrovirus infection. Journal of General Virology 71:767–773
    [Google Scholar]
  75. Maddon P. J., Dalgleish A. J., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and in the brain. Cell 47:333–348
    [Google Scholar]
  76. Martin U., Kiessig V., Blusch J. H., Haverich A., von der Helm K., Herden T., Steinhoff G. 1998; Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 352:692–694
    [Google Scholar]
  77. Mebatsion T., Finke S., Weiland F., Conzelmann K. K. 1997; A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein expressing cells. Cell 90:841–847
    [Google Scholar]
  78. Miller D. G., Edwards R. H., Miller A. D. 1994; Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukaemia virus. Proceedings of the National Academy of Sciences, USA 91:78–82
    [Google Scholar]
  79. Moore J. P., Trkola A., Dragic T. 1997; Co-receptors for HIV entry. Current Opinions in Immunology 9:551–562
    [Google Scholar]
  80. Munôz-Barroso I., Durell S., Sakaguchi K., Appella E., Blumenthal R. 1998; Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. Journal of Cell Biology 140:315–323
    [Google Scholar]
  81. O’Hara B., Johann S. V., Klinger H. P., Blair D. G., Rubinson H., Dunn K. J., Sass P., Vitek S. M., Robbins T. 1990; Characterisation of a human gene conferring sensitivity to infection by gibbon ape leukaemia virus. Cell Growth and Differentiation 1:119–127
    [Google Scholar]
  82. Okuma K., Nakamura M., Nakano S., Niho Y., Matsuura Y. 1999; Host range of human T-cell leukaemia virus type 1 analysed by a cell fusion-dependent reporter gene activation assay. Virology 254:235–244
    [Google Scholar]
  83. Olah Z., Lehel C., Anderson W. B., Eiden M. V., Wilson C. A. 1994; The cellular receptor for gibbon ape leukaemia virus is a novel high affinity sodium-dependent phosphate transporter. Journal of Biological Chemistry 269:25426–25431
    [Google Scholar]
  84. Owen S. M., Ellenberger D., Rayfields M., Wiktor S., Michel P., Grieco M. H., Gao F., Hahn B. H., Lal R. B. 1998; Genetically divergent strains of human immunodeficiency virus type 2 use multiple co-receptors for viral entry. Journal of Virology 72:5425–5432
    [Google Scholar]
  85. Pantaleo B. G., Butini L., Graziosi C., Poli G., Schnittman S. M., Greenhouse J. J., Gallin J. I., Fauci A. 1991; Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for transmission. Journal of Experimental Medicine 173:511–514
    [Google Scholar]
  86. Patience C., Takeuchi Y., Weiss R. A. 1997; Infection of human cells by an endogenous retrovirus of pigs. Nature Medicine 3:282–286
    [Google Scholar]
  87. Pedersen L., Johann S. V., van Zeijl M., Pedersen F. S., O’Hara B. 1995; Chimeras of receptors for gibbon ape leukaemia virus/feline leukaemia virus B and amphotropic murine leukaemia virus reveal different modes of receptor recognition by retroviruses. Journal of Virology 69:2401–2405
    [Google Scholar]
  88. Rasko J. E. J., Battini J.-L., Gottschalk R. J., Mazo I., Miller A. D. 1999; The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proceedings of the National Academy of Sciences, USA 96:2129–2134
    [Google Scholar]
  89. Rong L., Bates P. 1995; Analysis of subgroup A avian sarcoma and leukosis virus receptor: the 40 residue, cysteine rich, low density lipoprotein receptor repeat motif of TVA is sufficient to mediate viral entry. Journal of Virology 69:4847–4853
    [Google Scholar]
  90. Sagara Y., Ishida C., Inoue Y., Shiraki H., Maeda Y. 1998; 71 kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. Journal of Virology 72:535–541
    [Google Scholar]
  91. Schnell M. J., Johnson J. E., Buonocore L., Rose J. K. 1997; Construction of novel virus that targets HIV-1 infected cells and controls HIV-1 infection. Cell 90:849–857
    [Google Scholar]
  92. Schols D., De Clercq E. 1998; The simian immunodeficiency virus mnd(GB-1) strain uses CXCR4, not CCR5, as coreceptor for entry in human cells. Journal of General Virology 79:2203–2205
    [Google Scholar]
  93. Siess D. C., Kozak S., Kabat D. 1996; Exceptional fusogenicity of Chinese hamster ovary cells with murine retroviruses suggests roles for cellular factor(s) and receptor clusters in the membrane fusion process. Journal of Virology 70:3432–3439
    [Google Scholar]
  94. Smith E. J., Brojatsch J., Naughton J., Young J. A. 1998; The CAR1 gene encoding a cellular receptor specific for subgroup B and D avian leukosis viruses maps to the chicken tvb locus. Journal of Virology 72:3501–3503
    [Google Scholar]
  95. Sommerfelt M. A., Åsjö B. 1995; Intercellular adhesion molecule 3, a candidate human immunodeficiency virus type 1 receptor on lymphoid and monocytoid cells. Journal of General Virology 76:1345–1352
    [Google Scholar]
  96. Sommerfelt M. A., Weiss R. A. 1990; Receptor interference groups of 20 retroviruses plating on human cells. Virology 176:58–69
    [Google Scholar]
  97. Sommerfelt M. A., Williams B. P., Clapham P. R., Solomon E., Goodfellow P. N., Weiss R. A. 1988; Human T cell leukaemia viruses use a receptor determined by human chromosome 17. Science 242:1557–1559
    [Google Scholar]
  98. Sutton R. E., Littman D. R. 1996; Broad host range of human T-cell leukaemia virus type 1 demonstrated with an improved pseudotyping system. Journal of Virology 70:7322–7326
    [Google Scholar]
  99. Suzuki T., Ikeda H. 1998; The mouse homolog of the bovine leukaemia virus receptor is closely related to the δ subunit of adapter-related protein complex AP-3, not associated with the cell surface. Journal of Virology 72:593–599
    [Google Scholar]
  100. Tailor C., Kabat D. 1997; Variable regions A and B in the envelope glycoproteins of feline leukaemia virus subgroup B and amphotropic murine leukaemia virus interact with discrete receptor domains. Journal of Virology 71:9383–9391
    [Google Scholar]
  101. Tailor C. S., Takeuchi Y., O’Hara B., Johann S. V., Weiss R. A., Collins M. K. 1993; Mutation of amino acids within the gibbon ape leukaemia virus (GALV) receptor differentially affects feline leukaemia virus subgroup B, simian sarcoma-associated virus and GALV infections. Journal of Virology 67:6737–6741
    [Google Scholar]
  102. Tailor C. S., Nouri A., Lee C. G., Kozak C., Kabat D. 1999a; Cloning and characterisation of a cell surface receptor for xenotropic and polytropic murine leukaemia viruses. Proceedings of the National Academy of Sciences USA 96:927–932
    [Google Scholar]
  103. Tailor C., Nouri A., Zhao Y., Takeuchi Y., Kabat D. 1999b; A sodium-dependent neutral amino acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. Journal of Virology 73:4470–4474
    [Google Scholar]
  104. Tailor C. S., Willett B. J., Kabat D. 1999c; A putative cell surface receptor for anaemia-inducing feline leukaemia virus subgroup C is a member of a transport superfamily. Journal of Virology 73:6500–6505
    [Google Scholar]
  105. Takeuchi Y., Vile R. G., Simpson G., O’Hara B., Collins M. K. L., Weiss R. A. 1992; Feline leukaemia virus subgroup B uses the same cell surface receptor as gibbon ape leukaemia virus. Journal of Virology 66:1219–1222
    [Google Scholar]
  106. Takeuchi Y., Patience C., Magre S., Weiss R. A., Banerjee P. T., Le Tissier P., Stoye J. P. 1998; Host range and interference studies of three classes of pig endogenous retrovirus. Journal of Virology 72:9986–9991
    [Google Scholar]
  107. Talbot S. J., Weiss R. A., Schulz T. 1995; Reduced glycosylation of human cell lines increases susceptibility to CD4-independent infection by human immunodeficiency virus type 2 (LAV-2/B. Journal of Virology 69:3399–3406
    [Google Scholar]
  108. Torres J. V., Werner L. L., Malley A., Banjamini E. 1991; Neutralisation epitope in the envelope glycoprotein of simian retrovirus-1 (SRV-1) and identification of the retrovirus receptor. Journal of Medical Primatology 20:218–221
    [Google Scholar]
  109. van Zeijl M., Johann S. V., Closs E., Cunningham J., Eddy R., Shows T. B., O’Hara B. 1994; A human amphotropic retrovirus receptor is a second member of the gibbon ape leukaemia virus receptor family. Proceedings of the National Academy of Sciences, USA 91:1168–1172
    [Google Scholar]
  110. Wang H., Kavanaugh M. P., North R. A., Kabat D. 1991a; Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731
    [Google Scholar]
  111. Wang H., Paul R., Burgeson R. E., Keene D. R., Kabat D. 1991b; Plasma membrane receptors for ecotropic murine retroviruses require a limiting accessory factor. Journal of Virology 65:6468–6477
    [Google Scholar]
  112. Wang H., Dechant E., Kavanaugh M., North R., Kabat D. 1992; Effects of ecotropic murine retroviruses on the dual-function cell surface receptor/basic amino acid transporter. Journal of Biological Chemistry 267:23617–23624
    [Google Scholar]
  113. Wang H., Kavanaugh M. P., Kabat D. 1994; A critical site in the cell surface receptor for ecotropic murine retroviruses required for amino acid transport but not for viral reception. Virology 202:1058–1060
    [Google Scholar]
  114. Wang H., Klamo E., Kuhmann S. E., Kozak S. L., Kavanaugh M. P., Kabat D. 1996; Modulation of ecotropic murine retroviruses by N -linked glycosylation of the cell surface receptor/amino acid transporter. Journal of Virology 70:6884–6891
    [Google Scholar]
  115. Weiss R. A. 1993; Cellular receptors and viral glycoproteins involved in retrovirus entry. In The Retroviruses pp 1–108 Edited by Levy J. A. New York: Plenum Press;
  116. Willett B. J., Hosie M. J., Jarrett O., Neil J. C. 1994; Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9. Immunology 81:228–233
    [Google Scholar]
  117. Willett B. J., Hosie M. J., Neil J., Turner J. D., Hoxie J. A. 1997a; Common mechanism of infection by lentiviruses. Nature 385:587
    [Google Scholar]
  118. Willett B., Hosie M., Shaw A., Neil J. 1997b; Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus tropism. Journal of General Virology 78:611–618
    [Google Scholar]
  119. Willett B. J., Picard L., Hosie M. J., Turner J. D., Adema K., Clapham P. R. 1997c; Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. Journal of Virology 71:6407–6415
    [Google Scholar]
  120. Wilson C. A., Wong S., Muller J., Davidson C. E., Rose T. M., Burd P. 1998; Type C retrovirus from porcine primary peripheral blood mononuclear cells infects human cells. Journal of Virology 72:3082–3087
    [Google Scholar]
  121. Yahi N., Baghdiguian S., Moreau H., Fantini J. 1992; Galactosylceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. Journal of Virology 66:4848–4854
    [Google Scholar]
  122. Yang D., Haraguchi Y., Iwai H., Handa A., Shimizu N., Hoshino H. 1994; Inhibition of adsorption of human T-cell leukaemia virus type 1 by a plant lectin, wheat-germ agglutinin. International Journal of Cancer 56:100–105
    [Google Scholar]
  123. Yang D., Iwai H., Yamamoto A., Fu D., Hoshino H. 1997; Effect of phospholipids on adsorption and penetration of human T-cell leukaemia virus type 1. Biochimica et Biophysica Acta 1349:25–32
    [Google Scholar]
  124. Yang Y. L., Guo L., Xu S., Holland C. A., Kitamura T., Hunter K., Cunningham J. M. 1999; Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nature Genetics 21:216–219
    [Google Scholar]
  125. Yoshimoto T., Yoshimoto E., Meruelo D. 1990; Molecular cloning and characterisation of a novel human gene homologous to the murine ecotropic retroviral receptor. Virology 185:10–17
    [Google Scholar]
  126. Yoshimoto T., Yoshimoto E., Meruelo D. 1993; Identification of amino acid residues critical for infection with ecotropic murine leukaemia virus. Journal of Virology 67:1310–1314
    [Google Scholar]
  127. Young J. A. T., Bates P., Varmus H. E. 1993; Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. Journal of Virology 67:1181–1186
    [Google Scholar]
  128. Zhang L., He T., Talal A., Wang G., Frankel S. S., Ho D. D. 1998; In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus co-receptors: CXCR4, CCR3 and CCR5. Journal of Virology 72:5035–5045
    [Google Scholar]
  129. Zingler K., Bélanger C., Peters R., Agard D., Young J. A. T. 1995; Identification and characterisation of the viral interaction determinant of the subgroup A avian leukosis virus receptor. Journal of Virology 69:4261–4266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-12-3049
Loading
/content/journal/jgv/10.1099/0022-1317-80-12-3049
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error