1887

Abstract

The functions of Vif and Nef in human immunodeficiency virus type 1 (HIV-1) infection have some similarities: Vif- and Nef-dependent enhancement of HIV-1 replication is cell type-specific, and defective mutations in these genes result in restricted proviral DNA synthesis in infected cells. It has recently been shown that pseudotyping HIV-1 by the envelope glycoprotein of vesicular stomatitis virus (VSV-G) targets HIV-1 entry to an endocytic pathway and suppresses the requirement of Nef for virus infectivity. In this study, we examined whether VSV-G pseudotyping suppresses the requirement of Vif for HIV-1 infectivity. It was found that pseudotyping HIV-1 by VSV-G did not compensate for the Vif function. Together with the findings that Vif does not influence virus binding/entry and virion incorporation of Env, it is concluded that Vif enhances HIV-1 infectivity at the post-entry step(s) independently of the Env function by a different mechanism to that of Nef.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-11-2945
1999-11-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/11/0802945a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-11-2945&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A.. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology59:284–291
    [Google Scholar]
  2. Adachi A., Ono N., Sakai H., Ogawa K., Shibata R., Kiyomasu T., Masuike H., Ueda S.. 1991; Generation and characterization of the human immunodeficiency virus type 1 mutants. Archives of Virology117:45–58
    [Google Scholar]
  3. Adachi A., Kawamura M., Tokunaga K., Sakai H.. 1996; Methods for HIV/SIV gene analysis. In Viral Genome Methods pp43–53 Edited by Adolph K. W. Boca Raton: CRC Press;
    [Google Scholar]
  4. Aiken C.. 1997; Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclophilin A. Journal of Virology71:5871–5877
    [Google Scholar]
  5. Aiken C., Trono D.. 1995; Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. Journal of Virology69:5048–5056
    [Google Scholar]
  6. Akari H., Sakuragi J., Takebe Y., Tomonaga K., Kawamura M., Fukasawa M., Miura T., Shinjo T., Hayami M.. 1992; Biological characterization of human immunodeficiency virus type 1 and 2 mutants in human peripheral blood mononuclear cells. Archives of Virology123:157–167
    [Google Scholar]
  7. Akari H., Kannagi M., Shinjo T., Harada S.. 1993; Simple assay system for detecting human T cell leukemia virus type I-binding cells and its application in titrating binding inhibitory antibodies. Laboratory Investigation69:629–634
    [Google Scholar]
  8. Borman A. M., Quillent C., Charneau P., Dauguet C., Clavel F.. 1995; Human immunodeficiency virus type 1 Vif mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. Journal of Virology69:2058–2067
    [Google Scholar]
  9. Chowdhury I. H., Chao W., Potash M. J., Sova P., Gendelman H. E., Volsky D. J.. 1996; vif -Negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus. Journal of Virology70:5336–5345
    [Google Scholar]
  10. Cosson P.. 1996; Direct interaction between the envelope and matrix proteins of HIV-1. EMBO Journal15:5783–5788
    [Google Scholar]
  11. Courcoul M., Patience C., Rey F., Blanc D., Harmache A., Sire J., Vigne R., Spire B.. 1995; Peripheral blood mononuclear cells produce normal amounts of defective Vif human immunodeficiency virus type 1 particle which are restricted for the preretrotranscription steps. Journal of Virology69:2068–2074
    [Google Scholar]
  12. Fan L., Peden K.. 1992; Cell-free transmission of Vif mutants of HIV-1. Virology190:19–29
    [Google Scholar]
  13. Fisher A. G., Ensoli B., Ivanoff L., Chamberlain M., Petteway S., Ratner L., Gallo R. C., Wong-Staal F.. 1987; The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science237:888–893
    [Google Scholar]
  14. Fouchier R. A. M., Simon J. H. M., Jaffe A. B., Malim M. H.. 1996; Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag -, pol - and env -encoded proteins. Journal of Virology70:8263–8269
    [Google Scholar]
  15. Freed E. O., Martin M. A.. 1995; Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. Journal of Virology69:1984–1989
    [Google Scholar]
  16. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J.. 1992; Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. Journal of Virology66:6489–6495
    [Google Scholar]
  17. Goncalves J., Korin Y., Zack J., Gabuzda D.. 1996; Role of Vif in human immunodeficiency virus type 1 reverse transcription. Journal of Virology70:8701–8709
    [Google Scholar]
  18. Kimpton J., Emerman M.. 1992; Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated β-galactosidase gene. Journal of Virology66:2232–2239
    [Google Scholar]
  19. Luo T., Douglas J. L., Livingston R. L., Garcia J. V.. 1998; Infectivity enhancement by HIV-1 Nef is dependent on the pathway of virus entry: implications for HIV-based gene transfer systems. Virology241:224–233
    [Google Scholar]
  20. Madani N., Kabat D.. 1998; An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral vif protein. Journal of Virology72:10251–10255
    [Google Scholar]
  21. Miller M. D., Wamerdam M. T., Gaston I., Green W. C., Feinberg M. B.. 1994; The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. Journal of Experimental Medicine179:101–113
    [Google Scholar]
  22. Page K. A., Landau N. R., Littman D. R.. 1990; Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. Journal of Virology64:5270–5276
    [Google Scholar]
  23. Popovic M., Sarngadharan M. G., Read E., Gallo R. C.. 1984; Detection, isolation and continuous production of cytopathic retroviruses from patients with AIDS and pre-AIDS. Science224:497–500
    [Google Scholar]
  24. Reddy T. R., Kraus G., Yamada O., Looney D. J., Suhasini M., Wong-Staal F.. 1995; Comparative analyses of human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vif mutants. Journal of Virology69:3549–3553
    [Google Scholar]
  25. Reil H., Bukovsky A. A., Gelderblom H. R., Göttlinger H. G.. 1998; Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO Journal17:2699–2708
    [Google Scholar]
  26. Sakai H., Shibata R., Sakuragi J.-I., Sakuragi S., Kawamura M., Adachi A.. 1993; Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. Journal of Virology67:1663–1666
    [Google Scholar]
  27. Schwartz O., Marechal V., Donos O., Heard J. M.. 1995; Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cells. Journal of Virology69:4053–4059
    [Google Scholar]
  28. Schwedler U. V., Song J., Aiken C., Trono D.. 1993; vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology67:4945–4955
    [Google Scholar]
  29. Shibata R., Kawamura M., Sakai H., Hayami M., Ishimoto A., Adachi A.. 1991; Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. Journal of Virology65:3514–3520
    [Google Scholar]
  30. Simon J. H. M., Malim M. H.. 1996; The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. Journal of Virology70:5297–5305
    [Google Scholar]
  31. Simon J. H. M., Southerling T. E., Peterson J. C., Meyer B. E., Malim M. H.. 1995; Complementation of vif -defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. Journal of Virology69:4166–4172
    [Google Scholar]
  32. Simon J. H. M., Gaddis N. C., Fouchier R. A. M., Malim M. H.. 1998; Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Medicine4:1397–1400
    [Google Scholar]
  33. Sodroski J., Goh W. C., Rosen C., Tartar A., Portetelle D., Burny A., Haseltine W.. 1986; Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science231:1549–1553
    [Google Scholar]
  34. Sova P., Volsky D. J.. 1993; Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif -negative human immunodeficiency virus type 1. Journal of Virology67:6322–6326
    [Google Scholar]
  35. Spina C. A., Kwoh T. J., Chowers M. Y., Guatelli J. C., Richman D. D.. 1994; The importance of Nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. Journal of Experimental Medicine179:115–123
    [Google Scholar]
  36. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A.. 1987; The HIV ‘A’ ( sor ) gene product is essential for virus infectivity. Nature328:728–730
    [Google Scholar]
  37. Tokunaga K., Kojima A., Kurata T., Ikuta K., Akari H., Koyama A. H., Kawamura M., Inubushi R., Shimano R., Adachi A.. 1998a; Enhancement of human immunodeficiency virus type 1 infectivity by Nef is producer cell-dependent. Journal of General Virology79:2447–2453
    [Google Scholar]
  38. Tokunaga K., Kojima A., Kurata T., Ikuta K., Inubushi R., Shimano R., Kawamura M., Akari H., Koyama A. H., Adachi A.. 1998b; Producer cell-dependent requirement of the Nef protein for efficient entry of HIV-1 into cells. Biochemical and Biophysical Research Communications250:565–568
    [Google Scholar]
  39. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L.. 1979; DNA-mediated transfer of the adenine phosphoribosyl transferase locus into mammalian cells. Proceedings of the National Academy of Sciences USA76:1373–1376
    [Google Scholar]
  40. Yee J. K., Miyanohara A., LaPorte P., Bouic K., Burns J. C., Friedmann T.. 1994; A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proceedings of the National Academy of Sciences USA91:9564–9568
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-11-2945
Loading
/content/journal/jgv/10.1099/0022-1317-80-11-2945
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error