Effect of virulence on immunogenicity of single and double vaccinia virus recombinants expressing differently immunogenic antigens: antibody-response inhibition induced by immunization with a mixture of recombinants differing in virulence Free

Abstract

It has been shown recently that the residual virulence of vaccinia virus (VV) is an important factor that influences the outcome of immunization with VV recombinants. This study focused on the correlation of the residual virulence of several VV recombinants with antibody responses against the strongly immunogenic extrinsic glycoprotein E of varicella-zoster virus and the weakly immunogenic extrinsic protein preS2–S of hepatitis B virus and against VV proteins, with mice used as a model organism. Furthermore, the effects of mixing different recombinants on the antibody response were studied. The results obtained indicated that: (i) the antibody response depended on the residual virulence of the recombinants, more so in the case of the weakly immunogenic protein; (ii) the residual virulence, the growth rate of the VV recombinants in extraneural tissues and the immunogenicity were associated features; (iii) immunization with mixtures of two differently virulent recombinants or with unequal amounts of two similarly virulent recombinants sometimes led to the suppression of antibody response. The appearance of this suppression was dependent on three factors: the residual virulence of the recombinants, the immunogenicity of the extrinsic proteins and the ratio of the recombinants in the mixtures. Thus, the data obtained demonstrate that there are various limitations to the use of replicating VV recombinants for immunization purposes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-11-2901
1999-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/11/0802901a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-11-2901&mimeType=html&fmt=ahah

References

  1. Buller R. M. L., Palumbo G. J. 1992; Safety and attenuation of vaccinia virus. In Recombinant Poxviruses pp. 235–267 Edited by Binns M., Smith G. London: CRC Press;
    [Google Scholar]
  2. Buller R. M. L., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase- negative phenotype. Nature 317:813–815
    [Google Scholar]
  3. Christen L., Seto J., Niles E. G. 1990; Superinfection exclusion of vaccinia virus in virus-infected cell cultures. Virology 174:35–42
    [Google Scholar]
  4. Fonseca B. A. L., Pincus S., Shope R. E., Paoletti E., Mason P. W. 1994; Recombinant vaccinia viruses co- expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine 12:279–285
    [Google Scholar]
  5. Giavedoni L., Jones L., Mebus C., Yilma T. 1991; A vaccinia virus double recombinant expressing the F and H genes of rinderpest virus protects cattle against rinderpest and causes no pock lesions. Proceedings of the National Academy of Sciences USA 888011–8015
    [Google Scholar]
  6. Grigorieva I. M., Grigoriev V. G., Zakharova L. G., Pashvykina G. V., Shevlyagin V. Y., Altstein A. D. 1993; Immunogenicity of recombinant vaccinia viruses expressing hepatitis B virus surface antigen in mice.. Immunology Letters 36 267–272
    [Google Scholar]
  7. Hamšíková E., Závadová H., Kutinová L., Ludvíková V., Krchňá k V., Němeč ková Š., Vonka V. 1990; Priming effect of recombinant vaccinia virus coding for the middle hepatitis B surface antigen. Archives of Virology 113:283–289
    [Google Scholar]
  8. Joklik W. K. 1962; The purification of four strains of poxvirus. Virology 18:9–18
    [Google Scholar]
  9. Kutinová L., Němeč ková Š., Press M., Závadová H., Hirsch I., Němeč ek V., Krchňá k V, Smrt J., Slonim D., Vonka V., Hamšíková E. 1990; A recombinant vaccinia virus expressing hepatitis B virus middle surface protein. Restricted expression of HBV antigens in human diploid cells. Archives of Virology 112:181–193
    [Google Scholar]
  10. Kutinová L., Němeč ková Š., Hamšíková E., Závadová H., Ludvíková V., Brouček J., Kunke D., Zakharova L. G., Pashvykina G. V., Vonka V., Konig J., Loparev V. 1994; Hepatitis B virus proteins expressed by recombinant vaccinia viruses: influence of preS2 sequence on expression surface and nucleocapsid proteins in human diploid cells. Archives of Virology 134:1–15
    [Google Scholar]
  11. Kutinová L., Ludvíková V., Simonová V., Otavová M., Kryštofová J., Hainz P., Press M., Kunke D., Vonka V. 1995; Search for optimal parent for recombinant vaccinia virus vaccines. Study of three vaccinia virus vaccinal strains and several virus lines derived from them. Vaccine 13:487–493
    [Google Scholar]
  12. Kutinová L., Ludvíková V., Kryštofová J., Otavová M., Simonová V., Němeč ková Š., Hainz P., Vonka V. 1996; Influence of the parental virus strain on the virulence and immunogenicity of recombinant vaccinia viruses expressing HBV preS2-S protein or VZV glycoprotein I.. Vaccine 14:1045–1052
    [Google Scholar]
  13. Kutinová L., Ludvíková V., Němeč ková Š., Hainz P., Simonová V., Vonka V. 1999; Secondary vaccination with vaccinia virus recombinants: role of residual virulence of recombinants and immunogenicity of extrinsic antigens. Vaccine 17:1186–1192
    [Google Scholar]
  14. Lee M. S., Roos J. M., McGuigan L. C., Smith K. A., Cormier N., Cohen L. K., Roberts B. E., Payne L. G. 1992; Molecular attenuation of vaccinia virus: mutant generation and animal characterization. Journal of Virology 66:2617–2630
    [Google Scholar]
  15. Ludvíkov á V., Kunke D., Hamšíková E., Kutinová L., Vonka V. 1991; Immunogenicity in mice of varicella- zoster virus glycoprotein I expressed by a vaccinia virus–varicella-zoster virus recombinant. Journal of General Virology 72:1445–1449
    [Google Scholar]
  16. Mahr A., Payne L. G. 1992; Vaccinia recombinants as vaccine vectors. Immunobiology 184:126–146
    [Google Scholar]
  17. Morgan A. J., Mackett N., Finerty S., Arrand J. R., Scullion F. T., Epstein M. A. 1988; Recombinant vaccinia virus expressing Epstein–Barr virus glycoprotein gp340 protects cottontop tamarins against EB virus-induced malignant lymphomas. Journal of Medical Virology 25:189–195
    [Google Scholar]
  18. Moss B. 1996; Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proceedings of the National Academy of Sciences USA 93:11341–11348
    [Google Scholar]
  19. Moss B., Rosenblum E. N., Grimley P. M. 1971; Assembly of virus particles during mixed infection with wild-type vaccinia and a rifampicin-resistant mutant. Virology 45:135–148
    [Google Scholar]
  20. Němečková š., Kutinová L., Hamšíková E., Kunke D., Press M., Závadová H., Smrt J., Vonka V. 1991; Synthesis and immunogenicity of hepatitis B virus envelope antigen expressed by recombinant vaccinia virus. Finding of retention signal in the C-terminal portion of the preS1 domain of subtype adyw. Archives of Virology 121:29–41
    [Google Scholar]
  21. Němečková š., Ludvíková V., Marešová L., Kryštofová J., Hainz P., Kutinová L. 1996; Induction of varicella-zoster virus-neutralizing antibodies in mice by co-infection with recombinant vaccinia viruses expressing the gH or gL gene.. Journal of General Virology 77:211–215
    [Google Scholar]
  22. Perkus M. E., Piccini A., Lipinskas B. R., Paoletti E. 1985; Recombinant vaccinia virus: immunization against multiple pathogens. Science 229:981–984
    [Google Scholar]
  23. Perkus M. E., Panicali D., Mercer S., Paoletti E. 1986; Insertion and deletion mutants of vaccinia virus. Virology 152:285–297
    [Google Scholar]
  24. Perkus M. E., Tartaglia J., Paoletti E. 1995; Poxvirus-based vaccine candidates for cancer, AIDS, and other infectious diseases.. Journal of Leukocyte Biology 58:1–13
    [Google Scholar]
  25. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints.. American Journal of Hygiene 27:493–497
    [Google Scholar]
  26. Rodriguez D., Rodriguez J. R., Rodriguez J. F., Trauber D., Esteban M. 1989; Highly attenuated vaccinia virus mutants for the generation of safe recombinant viruses. Proceedings of the National Academy of Sciences USA 86:1287–1291
    [Google Scholar]
  27. Shida H., Matsumoto S. 1983; Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope. Cell 33:423–434
    [Google Scholar]
  28. Shida H., Hinuma Y., Hatanaka M., Morita M., Kidokoro M., Suzuki K., Maruyama T., Takahashi-Nishimaki F., Sugimoto M., Kitamura R., Miyazawa T., Hayami M. 1988; Effects and virulences of recombinant vaccinia viruses derived from attenuated strains that express the human T-cell leukemia virus type I envelope gene. Journal of Virology 62:4474–4480
    [Google Scholar]
  29. Tartaglia J., Perkus M. E., Taylor J., Norton E. K., Audonnet J. C., Cox W. I., Davis S. W., van der Hoeven J., Meignier B., Riviere M., Languet B., Paoletti E. 1992; NYVAC: a highly attenuated strain of vaccinia virus. Virology 188:217–232
    [Google Scholar]
  30. Taylor J., Weinberg R., Tartaglia J., Richardson C., Alkhatib G., Briedis D., Appel M., Norton E., Paoletti E. 1992; Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virology 187:321–328
    [Google Scholar]
  31. Tine J. A., Lanar D. E., Smith D. M., Wellde B. T., Schultheiss P., Ware L. A., Kauffman E. B., Wirtz R. A., De Taisne C., Hui G. S. N., Chang S. P., Church P., Hollingdale M. R., Kaslow D. C., Hoffman S., Guito K. P., Ballou W. R., Sadoff J. C., Paoletti E. 1996; NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. Infection and Immunity 64:3833–3844
    [Google Scholar]
  32. Wild T. F., Bernard A., Spehner D., Drillien R. 1992; Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. Journal of General Virology 73:359–367
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-11-2901
Loading
/content/journal/jgv/10.1099/0022-1317-80-11-2901
Loading

Data & Media loading...

Most cited Most Cited RSS feed