Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin- associated nuclear bodies Free

Abstract

Subnuclear distribution of the human herpesvirus-8 (HHV-8)- encoded nuclear protein LNA-1 was analysed at high resolution in body cavity (BC) lymphoma-derived cell lines, in cell hybrids between BC cells and various human and mouse cells and in freshly infected K562 and ECV cell lines. Three-dimensional reconstruction of nuclei from optical sections and quantitative analysis of the distribution of LNA-1 fluorescence in relation to chromatin showed that LNA-1 associates preferentially with the border of heterochromatin in the interphase nuclei. This was further confirmed in the following systems: in endo- and exonuclease-digested nuclei, in human–mouse (BC-1–Sp2- 0) hybrids and on chromatin spreads. LNA-1 was found to bind to mitotic chromosomes at random. Epstein–Barr virus (EBV), but not HHV-8, was rapidly lost from mouse–human hybrid cells in parallel with the loss of human chromosomes. HHV-8 could persist on the residual mouse background for more than 8 months. In early human–mouse hybrids that contain a single fused nucleus, LNA-1 preferentially associates with human chromatin. After the gradual loss of the human chromosomes, LNA-1 becomes associated with the murine pericentromeric heterochromatin. In human–human hybrids derived from the fusion of the HHV-8-carrying BCBL-1 cells and the EBV-immortalized lymphoblastoid cell line IB4, LNA-1 did not co-localize with EBNA-1, EBNA-2, EBNA-5 or EBNA-6. LNA-1 was not associated with PML containing ND10 bodies either. DNase but not RNase or detergent treatment of isolated nuclei destroys LNA-1 bodies. In advanced apoptotic cells LNA- 1 bodies remain intact but are not included in the apoptotic bodies themselves.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-11-2889
1999-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/11/0802889a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-11-2889&mimeType=html&fmt=ahah

References

  1. Ballestas M. E., Chatis P. A., Kaye K. M. 1999; Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641–644
    [Google Scholar]
  2. Boshoff C., Weiss R. A. 1998; Kaposi’s sarcoma- associated herpesvirus. Advances in Cancer Research 75:57–86
    [Google Scholar]
  3. Daniel M. T., Koken M., Romagne O., Barbey S., Bazarbachi A., Stadler M., Guillemin M. C., Degos L., Chomienne C., de The H. 1993; PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82:1858–1867
    [Google Scholar]
  4. Dittmer D., Lagunoff M., Renne R., Staskus K., Haase A., Ganem D. 1998; A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. Journal of Virology 72:8309–8315
    [Google Scholar]
  5. Flore O., Rafii S., Ely S., O’Leary J. J., Hyjek E. M., Cesarman E. 1998; Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394:588–592
    [Google Scholar]
  6. He J., Bhat G., Kankasa C., Chintu C., Mitchell C., Duan W., Wood C. 1998; Seroprevalence of human herpesvirus 8 among Zambian women of childbearing age without Kaposi’s sarcoma (KS) and mother–child pairs with KS.. Journal of Infectious Diseases 178:1787–1790
    [Google Scholar]
  7. Holmvall P., Szekely L. 1999; Computer programs that allow fast acquisition, visualization and overlap quantitation of fluorescent 3D microscopic objects using nearest neighbor deconvolution algorithm. Applied Immunochemistry & Molecular Morphology none in press
    [Google Scholar]
  8. Jackson D. A. 1997; Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei.Molecular. Biology Reports 24:209–220
    [Google Scholar]
  9. Jenuwein T., Laible G., Dorn R., Reuter G. 1998; SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences 54:80–93
    [Google Scholar]
  10. Kedes D. H., Lagunoff M., Renne R., Ganem D. 1997; Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus.. Journal of Clinical Investigation 100:2606–2610
    [Google Scholar]
  11. Kennedy M. M., Cooper K., Howells D. D., Picton S., Biddolph S., Lucas S. B., McGee J. O., O’Leary J. J. 1998; Identification of HHV8 in early Kaposi’s sarcoma: implications for Kaposi’s sarcoma pathogenesis.. Molecular Pathology 51:14–20
    [Google Scholar]
  12. Kliche S., Kremmer E., Hammerschmidt W., Koszinowski U., Haas J. 1998; Persistent infection of Epstein–Barr virus-positive B lymphocytes by human herpesvirus 8. Journal of Virology 72:8143–8149
    [Google Scholar]
  13. Knowles D. M., Cesarman E. 1997; The Kaposi’s sarcoma- associated herpesvirus (human herpesvirus-8) in Kaposi’s sarcoma, malignant lymphoma, and other diseases. Annals of Oncology 8:123–129
    [Google Scholar]
  14. Lamond A. I., Earnshaw W. C. 1998; Structure and function in the nucleus. Science 280:547–553
    [Google Scholar]
  15. Martin J. N., Ganem D. E., Osmond D. H., Page-Shafer K. A., Macrae D., Kedes D. H. 1998; Sexual transmission and the natural history of human herpesvirus 8 infection. New England Journal of Medicine 338:948–954
    [Google Scholar]
  16. Maul G. G. 1998; Nuclear domain 10, the site of DNA virus transcription and replication.. Bioessays 20:660–667
    [Google Scholar]
  17. Mayama S., Cuevas L. E., Sheldon J., Omar O. H., Smith D. H., Okong P., Silvel B., Hart C. A., Schulz T. F. 1998; Prevalence and transmission of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents.. International Journal of Cancer 77:817–820
    [Google Scholar]
  18. Moore P. S., Chang Y. 1998; Antiviral activity of tumor- suppressor pathways: clues from molecular piracy by KSHV. Trends in Genetics 14:144–150
    [Google Scholar]
  19. Neipel F., Albrecht J. C., Fleckenstein B. 1998; Human herpesvirus 8 – the first human Rhadinovirus. Journal of the National Cancer Institute Monographs 23:73–77
    [Google Scholar]
  20. Nicholas J., Zong J. C., Alcendor D. J., Ciufo D. M., Poole L. J., Sarisky R. T., Chiou C. J., Zhang X., Wan X., Guo H. G., Reitz M. S., Hayward G. S. 1998; Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. Journal of the National Cancer Institute Monographs 23:79–88
    [Google Scholar]
  21. Pokrovskaja K., Trivedi P., Klein G., Szekely L. 1997; Epstein–Barr virus-encoded LMP1 protein upregulates the pNDCF group of nucleoskeleton–cytoskeleton-associated proteins.. Journal of General Virology 78:2031–2040
    [Google Scholar]
  22. Rabkin C. S., Schulz T. F., Whitby D., Lennette E. T., Magpantay L. I., Chatlynne L., Biggar R. J. 1998; Interassay correlation of human herpesvirus 8 serologic tests. HHV-8 Interlaboratory Collaborative Group.Journal of Infectious Diseases 178:304–309
    [Google Scholar]
  23. Rainbow L., Platt G. M., Simpson G. R., Sarid R., Gao S. J., Stoiber H., Herrington C. S., Moore P. S., Schulz T. F. 1997; The 222- to 234- kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma- associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. Journal of Virology 71:59155921
    [Google Scholar]
  24. Sarid R., Flore O., Bohenzky R. A., Chang Y., Moore P. S. 1998; Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1. Journal of Virology 72:1005–1012
    [Google Scholar]
  25. Saurin A. J., Shiels C., Williamson J., Satijn D. P., Otte A. P., Sheer D., Freemont P. S. 1998; The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain.. Journal of Cell Biology 142:887–898
    [Google Scholar]
  26. Szekely L., Jiang W.-Q., Pokrovskaja K., Wiman K. G., Klein G., Ringertz N. 1995; Reversible nucleolar translocation of Epstein–Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion.. Journal of General Virology 76:2423–2432
    [Google Scholar]
  27. Szekely L., Pokrovskaja K., Jiang W. Q., de The H., Ringertz N., Klein G. 1996; The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. Journal of Virology 70:2562–2568
    [Google Scholar]
  28. Szekely L., Chen F., Teramoto N., Ehlin-Henriksson B., Pokrovskaja K., Szeles A., Manneborg-Sandlund A., Löwbeer M., Lennette E. T., Klein G. 1998; Restricted expression of Epstein–Barr virus (EBV)-encoded, growth transformation- associated antigens in an EBV- and human herpesvirus type 8-carrying body cavity lymphoma line.. Journal of General Virology 79:1445–1452
    [Google Scholar]
  29. Turner B. M. 1998; Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cellular and Molecular Life Sciences 54:21–31
    [Google Scholar]
  30. Wallrath L. L. 1998; Unfolding the mysteries of heterochromatin. [Review, 66 refs]. Current Opinion in Genetics and Development 8:147–153
    [Google Scholar]
  31. Weiss R. A., Whitby D., Talbot S., Kellam P., Boshoff C. 1998; Human herpesvirus type 8 and Kaposi’s sarcoma.. Journal of the National Cancer Institute Monographs 23:51–54
    [Google Scholar]
  32. Whitby D., Boshoff C. 1998; Kaposi’s sarcoma herpesvirus as a new paradigm for virus-induced oncogenesis.. Current Opinion in Oncology 10:405–412
    [Google Scholar]
  33. Zong J. C., Metroka C., Reitz M. S., Nicholas J., Hayward G. S. 1997; Strain variability among Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genomes: evidence that a large cohort of United States AIDS patients may have been infected by a single common isolate.. Journal of Virology 71:2505–2511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-11-2889
Loading
/content/journal/jgv/10.1099/0022-1317-80-11-2889
Loading

Data & Media loading...

Most cited Most Cited RSS feed