
Full text loading...
Expression cassettes containing the codons for the pestivirus E rns signal peptide (Sig) followed by a chemically synthesized ORF that encoded the bovine viral diarrhoea virus (BVDV) strain C86 glycoprotein E2, a class I membrane glycoprotein, were constructed with and without a chimeric intron sequence immediately upstream of the translation start codon, and incorporated into the genome of bovine herpesvirus-1 (BHV-1). The resulting recombinants, BHV- 1/SigE2syn and BHV-1/SigE2syn-intron, expressed comparable quantities of glycoprotein E2, and Northern blot hybridizations indicated that the presence of the intron did not increase significantly the steady-state levels of transcripts encompassing the SigE2syn ORF. In BHV-1/SigE2syn- infected cells, the 54 kDa E2 glycoprotein formed a dimer with an apparent molecular mass of 94 kDa, which was further modified to a 101 kDa form found in the envelope of recombinant virus particles. Penetration kinetics and single-step growth curves indicated that the incorporation of the BVDV E2 glycoprotein in the BHV-1 envelope, which apparently did not require BHV-1-specific signals, interfered with entry into target cells and egress of progeny virions. These results demonstrate that a pestivirus glycoprotein can be expressed efficiently by BHV-1 and incorporated into the viral envelope. BHV-1 thus represents a promising tool for the development of efficacious live and inactivated BHV-1-based vector vaccines.
Article metrics loading...
Full text loading...
References
Data & Media loading...