1887

Abstract

Assembly of replication-competent hepadnavirus nucleocapsids requires interaction of core protein, polymerase and encapsidation signal (ϵ) with viral pregenomic RNA. The N-terminal portion (aa 1–149) of the core protein is able to self-assemble into nucleocapsids, whereas the C-terminal portion (aa 150–183) is known to interact with pregenomic RNA. In this study, two hepatitis B virus (HBV) core mutants (C144Arg and C144Lys) in which the C-terminal SPRRR (Ser-Pro-Arg-Arg-Arg) motif was replaced by a stretch of arginine or lysine residues were generated to test their role in pregenome encapsidation and virus maturation. Mutant or wild-type core-expression plasmids were co-transfected with a core-negative plasmid into human hepatoma HuH-7 cells to compare -complementation efficiency for virus replication. Both low- and high-density capsids were present in the cytoplasm and culture medium of HuH-7 cells in all transfections. Nucleocapsids formed by C144Arg and C144Lys, however, lost the endogenous polymerase activity to repair HBV DNA. Furthermore, in co-transfection of pHBVC144Arg or pHBVC144Lys with a plasmid which produces replication-competent nucleocapsids, the HBV DNA repairing signal was reduced 40- to 80-fold. This is probably due to formation of mosaic particles of wild-type and mutant cores. Results indicated that the SPRRR motif at the core protein C terminus is important for HBV DNA replication and maturation. Additionally, triple-plasmid transfection experiments showed that nucleocapsids containing various amounts of C144Arg and wild-type core proteins exhibited a bias in selecting a shorter pregenome for encapsidation and DNA replication. It is therefore suggested that unknown factors are also involved in HBV pregenome packaging.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2661
1999-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802661a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2661&mimeType=html&fmt=ahah

References

  1. Albin C., Robinson W. S. 1980; Protein kinase activity in hepatitis B virus. Journal of Virology 34:297–302
    [Google Scholar]
  2. Beames B., Lanford R. E. 1995; Insertions within the hepatitis B virus capsid protein influence capsid formation and RNA encapsidation. Journal of Virology 69:6833–6838
    [Google Scholar]
  3. Birnbaum F., Nassal M. 1990; Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. Journal of Virology 64:3319–3330
    [Google Scholar]
  4. Chang C., Zhou S., Ganem D., Standring D. N. 1994; Phenotypic mixing between different hepadnavirus nucleocapsid protein reveals C protein dimerization to be cis preferential. Journal of Virology 68:5225–5231
    [Google Scholar]
  5. Chiang P.-W., Hu C.-P., Su T.-S., Lo S. J., Chu M.-H., Schaller H., Chang C. 1990; Encapsidation of truncated human hepatitis B virus genomes through trans -complementation of the core protein and polymerase. Virology 176:355–361
    [Google Scholar]
  6. Chiang P.-W., Jeng K.-S., Hu C.-P., Chang C. 1992; Characterization of a cis element required for packaging and replication of the human hepatitis B virus. Virology 186:701–711
    [Google Scholar]
  7. Cohen B. J., Richmond J. E. 1982; Electron microscopy of hepatitis B core antigen synthesized in E. coli. Nature 296:677–678
    [Google Scholar]
  8. Crowther R. A., Kiselev N. A., Bottcher B., Berriman J. A., Borisova G. P., Ose V., Pumpens P. 1994; Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77:943–950
    [Google Scholar]
  9. Duclos-Vallée J.-C., Capel F., Mabit H., Petit M.-A. 1998; Phosphorylation of the hepatitis B virus core protein by glyceraldehyde-3-phosphate dehydrogenase protein kinase activity. Journal of General Virology 79:1665–1670
    [Google Scholar]
  10. Feitelson M. A., Mavion P. L., Robinson W. S. 1982; Core particles of hepatitis B virus and ground squirrel hepatitis virus. II. Characterization of the protein kinase reaction associated with ground squirrel hepatitis virus and hepatitis B virus. Journal of Virology 43:741–748
    [Google Scholar]
  11. Gallina A., Bonelli F., Zentilin L., Rindi G., Muttini M., Milanesi G. 1989; A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self- assembles into capsid particles but fails to bind nucleic acids. Journal of Virology 63:4645–4652
    [Google Scholar]
  12. Ganem D., Varmus H. E. 1987; The molecular biology of hepatitis B viruses. Annual Review of Biochemistry 56:651–693
    [Google Scholar]
  13. Gerlich W. H., Goldmann U., Muller R., Stibbe W., Wolff W. 1982; Specificity and localization of the hepatitis B virus-associated protein kinase. Journal of Virology 42:761–766
    [Google Scholar]
  14. Graham F., van der Eb A. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–457
    [Google Scholar]
  15. Gust I. D., Burrell C. J., Coulepis A. G., Robinson W. S., Zuckerman A. J. 1986; Taxonomic classification of human hepatitis B virus. Intervirology 25:14–29
    [Google Scholar]
  16. Hatton T., Zhou S., Standring D. N. 1992; RNA- and DNA- binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. Journal of Virology 66:5232–5241
    [Google Scholar]
  17. Hirsch R., Lavine J., Chang L., Varmus H., Ganem D. 1990; Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature 344:552–555
    [Google Scholar]
  18. Hu J., Seeger C. 1996; Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proceedings of the National Academy of Sciences, USA 93:1060–1064
    [Google Scholar]
  19. Hu J., Toft D. O., Seeger C. 1997; Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO Journal 10:59–68
    [Google Scholar]
  20. Jeng K.-S., Hu C.-P., Chang C. 1991; Differential formation of disulfide linkages in the core antigen of extracellular and intracellular hepatitis B virus core particles. Journal of Virology 65:3924–3927
    [Google Scholar]
  21. Jeng K.-S., Hu C.-P., Chang C. 1993; Hepatitis B core antigen forms oligomers and complexes with the p gene product in hepatitis B virus core particles. Journal of Gastroenterology and Hepatology 8:S114–S118
    [Google Scholar]
  22. Junker M., Galle P., Schaller H. 1987; Expression and replication of the hepatitis B virus genome under foreign promoter control. Nucleic Acids Research 15:10117–10132
    [Google Scholar]
  23. Junker-Niepmann M., Bartenschlager R., Schaller H. 1990; A short cis -acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO Journal 9:3389–3396
    [Google Scholar]
  24. Kann M., Gerlich W. H. 1994; Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. Journal of Virology 68:7993–8000
    [Google Scholar]
  25. Kau J.-H., Ting L.-P. 1997; A serine-kinase-containing protein complex interacts with the terminal protein domain of polymerase of hepatitis B virus. Journal of Biomedical Science 4:155–161
    [Google Scholar]
  26. Kau J.-H., Ting L.-P. 1998; Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. Journal of Virology 72:3796–3803
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  28. Liao W., Ou J.-H. 1995; Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. Journal of Virology 69:1025–1029
    [Google Scholar]
  29. Lin C.-G., Lo S. J. 1992; Evidence for involvement of a ribosomal leaky scanning mechanism in the translation of the hepatitis B virus pol gene from the viral pregenome RNA. Virology 188:342–352
    [Google Scholar]
  30. Lin C.-G., Yang S.-J., Hwang W.-L., Su T.-S., Lo S. J. 1995; Demonstration of the presence of protease-cutting site in the spacer of hepatitis B viral Pol protein. Journal of Virological Methods 51:61–74
    [Google Scholar]
  31. Metzger K., Bringas R. 1998; Proline-138 is essential for the assembly of hepatitis B virus core protein. Journal of General Virology 79:587–590
    [Google Scholar]
  32. Nassal M. 1988; Total chemical synthesis of a gene for hepatitis B core protein and its functional characterization. Gene 66:279–294
    [Google Scholar]
  33. Nassal M. 1992; The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. Journal of Virology 66:4107–4116
    [Google Scholar]
  34. Nassal M. 1996; Hepatitis B virus morphogenesis. Current Topics in Microbiology and Immunology 214:297–337
    [Google Scholar]
  35. Nassal M., Schaller H. 1993; Hepatitis B virus replication. Trends in Microbiology 1:221–228
    [Google Scholar]
  36. Pasek M., Goto T., Gilbert W., Zink B., Schaller H., MacKay P., Leadbetter G., Murray K. 1979; Hepatitis B virus genes and their expression in E. coli. Nature 282:575–579
    [Google Scholar]
  37. Roossinck M. J., Siddiqui A. 1987; In vivo phosphorylation and protein analysis of hepatitis B virus core protein. Journal of Virology 61:955–961
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitor. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  40. Scaglioni P. P., Melegari M., Wands J. R. 1994; Characterization of hepatitis B virus core mutants that inhibit viral replication. Virology 205:112–120
    [Google Scholar]
  41. Scaglioni P., Melegari M., Takahashi M., Chowdhury J. R., Wands J. 1996; Use of dominant negative mutants of the hepadnaviral core protein as antiviral agents. Hepatology 24:1010–1017
    [Google Scholar]
  42. Schlicht H. J., Bartenschlager R., Schaller H. 1989; The duck hepatitis B virus core protein contains a highly phosphorylated C terminus that is essential for replication but not for RNA packaging. Journal of Virology 63:2995–3000
    [Google Scholar]
  43. Seifer M., Standring D. N. 1993; Recombinant human hepatitis B virus reverse transcriptase is active in the absence of the nucleocapsid of the viral replication origin, DR1. Journal of Virology 67:4513–4520
    [Google Scholar]
  44. Sprengel R., Kuhn C., Will H., Schaller H. 1985; Comparative sequence analysis of duck and human hepatitis B virus genomes. Journal of Medical Virology 15:323–333
    [Google Scholar]
  45. Summers J., Mason W. S. 1982; Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29:403–415
    [Google Scholar]
  46. Tavis J. E., Ganem D. 1993; Expression of functional hepatitis B virus polymerase in yeast reveals it to be the sole viral protein required for correct initiation of reverse transcription. Proceedings of the National Academy of Sciences, USA 90:4107–4111
    [Google Scholar]
  47. Terré S., Petit M.-A., Brechot C. 1991; Defective hepatitis B virus particles are generated by packaging and reverse transcription of spliced viral RNAs in vivo. Journal of Virology 65:5539–5543
    [Google Scholar]
  48. Tiollais P., Charnay P., Vyas G. N. 1981; Biology of hepatitis B virus. Science 213:406–411
    [Google Scholar]
  49. Towbin H., Stachelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy Sciences, USA 76:4350–4354
    [Google Scholar]
  50. Ulrich R., Nassal M., Meisel H., Kruger D. H. 1998; Core particles of hepatitis B virus as carrier for foreign epitopes. Advances in Virus Research 50:141–182
    [Google Scholar]
  51. von Weizsacker F., Wieland S., Blum H. E. 1995; Identification of two separable modules in the duck hepatitis B virus core protein. Journal of Virology 69:2704–2707
    [Google Scholar]
  52. von Weizsacker F., Wieland S., Blum H. E. 1996; Inhibition of viral replication by genetically engineered mutants of the duck hepatitis B virus core protein. Hepatology 24:294–299
    [Google Scholar]
  53. Wands J. R., Geissler M., Putlitz J., Blum H., von Weizsacker F., Mohr L., Yoon S. K., Melegari M., Scaglioni P. P. 1997; Nucleic acid-based antiviral and gene therapy of chronic hepatitis B infection. Journal of Gastroenterology and Hepatology 12:S354–S369
    [Google Scholar]
  54. Wang G. H., Seeger C. 1992; The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 71:663–670
    [Google Scholar]
  55. Yu M., Summers J. 1991; A domain of the hepadnavirus capsid protein is specifically required for DNA maturation and virus assembly. Journal of Virology 65:2511–2517
    [Google Scholar]
  56. Yuan T. T.-T., Lin M.-H., Chen D.-S., Shih C. 1998a; A defective interference-like phenomenon of human hepatitis B virus in chronic carriers. Journal of Virology 72:578–584
    [Google Scholar]
  57. Yuan T. T.-T., Lin M.-H., Qiu S. M., Shih C. 1998b; Functional characterization of naturally occurring variants of human hepatitis B virus containing the core internal deletion mutation. Journal of Virology 72:2168–2176
    [Google Scholar]
  58. Zheng J., Schodel F., Peterson D. L. 1992; The structure of hepadnaviral core antigen: identification of free thiols and determination of the disulfide bonding pattern. Journal of Biological Chemistry 267:9422–9429
    [Google Scholar]
  59. Zlotnick A., Cheng N., Conway J. F., Booy F. P., Steven A. C., Stahl S. J., Wingfield P. T. 1996; Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry 35:7412–7421
    [Google Scholar]
  60. Zlotnick A., Cheng N., Stahl S. J., Conway J. F., Steven A. C., Wingfield P. T. 1997; Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: implications for morphogenesis and organization of encapsidated RNA. Proceedings of the National Academy of Sciences, USA 94:9556–9561
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2661
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2661
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error