1887

Abstract

The envelope is of cardinal importance for the entry of feline immunodeficiency virus (FIV) into its host cells, which consist of cells of the immune system including macrophages. To characterize the envelope glycoprotein determinants involved in macrophage tropism, chimeric infectious molecular clones were constructed containing envelope gene sequences from isolates that had been propagated in peripheral blood mononuclear cells (PBMC). The progeny virus was examined for growth in PBMC and bone marrow-derived macrophages and viruses with different replication kinetics in macrophages were selected. Envelope-chimeric viruses revealed that nucleotide sequences encoding variable regions 3 and 4 of the surface glycoprotein, SU, are involved in macrophage tropism of FIV. To assess the biological importance of this finding, the phenotypes of envelope proteins of viruses derived from bone marrow, brain, lymph node and PBMC of an experimentally FIV-infected, healthy cat were examined. Since selection during propagation had to be avoided, provirus envelope gene sequences were amplified directly and cloned into an infectious molecular clone of FIV strain Petaluma. The viruses obtained were examined for their replication properties. Of 15 clones tested, 13 clones replicated both in PBMC and macrophages, two (brain-derived clones) replicated in PBMC only and none replicated in Crandell feline kidney cells or astrocytes. These results indicate that dual tropism for PBMC and macrophages is a common feature of FIV variants present .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2639
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802639a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2639&mimeType=html&fmt=ahah

References

  1. Ackley C. D., Yamamoto J. K., Levy N., Pedersen N. C., Cooper M. D. 1990; Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus. Journal of Virology 64:5652–5655
    [Google Scholar]
  2. Back N. K., Smit L., De Jong J. J., Keulen W., Schutten M., Goudsmit J., Tersmette M. 1994; An N -glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 199:431–438
    [Google Scholar]
  3. Beebe A. M., Dua N., Faith T. G., Moore P. F., Pedersen N. C., Dandekar S. 1994; Primary stage of feline immunodeficiency virus infection: viral dissemination and cellular targets. Journal of Virology 68:3080–3091
    [Google Scholar]
  4. Bendinelli M., Pistello M., Lombardi S., Poli A., Garzelli C., Matteucci D., Ceccherini-Nelli L., Malvaldi G., Tozzini F. 1995; Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clinical Microbiological Reviews 8:87–112
    [Google Scholar]
  5. Boom R., Sol C. J. A., Salimans M. M. M., Jansen C. L., Wertheim-van Dillen P. M. E., van der Noordaa J. A. 1990; Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28:495–503
    [Google Scholar]
  6. Brunner D., Pedersen N. C. 1989; Infection of peritoneal macrophages in vitro and in vivo with feline immunodeficiency virus. Journal of Virology 63:5483–5488
    [Google Scholar]
  7. Cao J., Bergeron L., Helseth E., Thali M., Repke H., Sodroski J. 1993; Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. Journal of Virology 67:2747–2755
    [Google Scholar]
  8. Chesebro B., Wehrly K., Nishio J., Perryman S. 1992; Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66:6547–6554
    [Google Scholar]
  9. Daniel S. L., Legendre A. M., Moore R. N., Rouse B. T. 1993; Isolation and functional studies on feline bone marrow derived macrophages. Veterinary Immunology and Immunopathology 36:107–122
    [Google Scholar]
  10. Dean G. A., Reubel G. H., Moore P. F., Pedersen N. C. 1996; Proviral burden and infection kinetics of feline immunodeficiency virus in lymphocyte subsets of blood and lymph node. Journal of Virology 70:5165–5169
    [Google Scholar]
  11. De Jong J. J., De Ronde A., Keulen W., Tersmette M., Goudsmit J. 1992; Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium- inducing phenotype: analysis by single amino acid substitution. Journal of Virology 66:6777–6780
    [Google Scholar]
  12. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  13. de Ronde A., Stam J. G., Boers P., Langedijk H., Meloen R., Hesselink W., Keldermans C. E. J. M., van Vliet A. L. W., Verschoor E. J., Horzinek M. C., Egberink H. F. 1994; Antibody response in cats to the envelope proteins of feline immunodeficiency virus: identification of an immunodominant neutralization domain. Virology 198:257–264
    [Google Scholar]
  14. Doranz B. J., Rucker J., Yi Y., Smythz R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158
    [Google Scholar]
  15. Dow S. W., Dreitz M. J., Hoover E. A. 1992; Feline immunodeficiency virus neurotropism: evidence that astrocytes and microglia are the primary target cells. Veterinary Immunology and Immunopathology 35:23–35
    [Google Scholar]
  16. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4 + cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673
    [Google Scholar]
  17. English R. V., Johnson C. M., Gebhard D. H., Tompkins M. B. 1993; In vivo lymphocyte tropism of feline immunodeficiency virus. Journal of Virology 67:5175–5186
    [Google Scholar]
  18. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  19. Fouchier R. A. M., Groenink M., Kootstra N. A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. 1992; Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. Journal of Virology 66:3183–3187
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120
    [Google Scholar]
  21. Levy J. A. 1993; Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57:183–289
    [Google Scholar]
  22. Lombardi S., Garzelli C., La Rosa C., Zaccaro L., Specter S., Malvaldi G., Tozzini F., Esposito F., Bendinelli M. 1993; Identification of a linear neutralization site within the third variable region of feline immunodeficiency virus envelope. Journal of Virology 67:4742–4749
    [Google Scholar]
  23. Miyazawa T., Furuya T., Itagaki S. I., Tohya Y., Nakano K., Takahashi E., Mikami T. 1989; Preliminary comparisons of the biological properties of two strains of feline immunodeficiency virus (FIV) isolated in Japan with FIV Petaluma strain isolated in the United States. Archives of Virology 108:59–68
    [Google Scholar]
  24. Nishimura Y., Nakamura S., Goto N., Hasegawa T., Pang H., Goto Y., Kato H., Youn H. Y., Endo Y., Mizuno T., Momoi Y., Ohno K., Watari T., Tsujimoto H., Hasegawa A. 1996; Molecular characterization of feline immunodeficiency virus genome obtained directly from organs of a naturally infected cat with marked neurological symptoms and encephalitis. Archives of Virology 141: 1933-1948
    [Google Scholar]
  25. Olmsted R. A., Barnes A. K., Yamamoto J. K., Hirsch V. M., Purcell R. H., Johnson P. R. 1989; Molecular cloning of feline immunodeficiency virus. Proceedings of the National Academy of Sciences USA 86:2448–2452
    [Google Scholar]
  26. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. 1987; Isolation of a T- lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793
    [Google Scholar]
  27. Phillips T. R., Talbott R. L., Lamont C., Muir S., Lovelace K., Elder J. H. 1990; Comparison of two host cell range variants of feline immunodeficiency virus. Journal of Virology 64:4605–4613
    [Google Scholar]
  28. Poeschla E. M., Looney D. J. 1998; CXCR4 is required by a nonprimate lentivirus: heterologous expression of feline immunodeficiency virus in human, rodent, and feline cells. Journal of Virology 72:6858–6866
    [Google Scholar]
  29. Power C., Buist R., Johnston J. B., Del Bigio M. R., Ni W., Dawood M. R., Peeling J. 1998; Neurovirulence in feline immunodeficiency virus-infected neonatal cats is viral strain specific and dependent on systemic immune suppression. Journal of Virology 72:9109–9115
    [Google Scholar]
  30. Shioda T., Oka S., Ida S., Nokihara K., Toriyoshi H., Mori S., Takebe Y., Kimura S., Shimada K., Nagai Y. 1994; A naturally occurring single basic amino acid substitution in the V3 region of the human immunodeficiency virus type 1 env protein alters the cellular host range and antigenic structure of the virus. Journal of Virology 68:7689–7696
    [Google Scholar]
  31. Siebelink K. H. J., Hai Chu I., Rimmelzwaan G. F., Weijer K., van Herwijnen R., Knell P., Egberink H. F., Bosch M. L., Osterhaus A. D. M. E. 1990; Feline immunodeficiency virus (FIV) infection in the cat as a model for HIV infection in man: FIV-induced impairment of immune function. AIDS Research and Human Retroviruses 6:1373–1378
    [Google Scholar]
  32. Siebelink K. H. J., Hai Chu I., Rimmelzwaan G. F., Weijer K., Osterhaus A. D. M. E., Bosch M. L. 1992; Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat. Journal of Virology 66:1091–1097
    [Google Scholar]
  33. Siebelink K. H. J., Karlas J. A., Rimmelzwaan G. F., Osterhaus A. D. M. E., Bosch M. L. 1995; A determinant of feline immunodeficiency virus involved in Crandell feline kidney cell tropism. Veterinary Immunology and Immunopathology 46:61–69
    [Google Scholar]
  34. Simmonds P., Zhang L. Q., McOmish F., Balfe P., Ludlam C. A., Brown A. J. L. 1991; Discontinuous sequence change of human immunodeficiency virus (HIV) type 1 env sequence in plasma viral and lymphocyte-associated proviral populations in vivo: implications for models of HIV pathogenesis. Journal of Virology 65:6266–6276
    [Google Scholar]
  35. Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., Carnegie G., Desselberger U., Gray P. W., Weiss R. A., Clapham P. R. 1996; Primary, syncytium- inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70:8355–8360
    [Google Scholar]
  36. Strizki J. M., Albright A. V., Sheng H., O’Connor M., Perrin L., Gonzalez-Scarano F. 1996; Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. Journal of Virology 70:7654–7662
    [Google Scholar]
  37. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. 1989; Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proceedings of the National Academy of Sciences USA 86:5743–5747
    [Google Scholar]
  38. Tersmette M., Lange J. M., de Goede R. E. Y., de Wolf F., Eeftink- Schattenkerk J. K., Schellekens P. T., Coutinho R. A., Huisman J. G., Goudsmit J., Miedema F. 1989; Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet i983–985
    [Google Scholar]
  39. Vahlenkamp T. W., Verschoor E. J., Schuurman N. N. M. P., van Vliet A. L. W., Horzinek M. C., Egberink H. F., de Ronde A. 1997; A single amino acid substitution in the transmembrane glycoprotein of feline immunodeficiency virus alters cellular tropism. Journal of Virology 71:7132–7135
    [Google Scholar]
  40. Van de Peer Y., De Wachter R. 1994; TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences 10:569–570
    [Google Scholar]
  41. Verschoor E. J., Boven L. A., Blaak H., van Vliet A. L. W., Horzinek M. C., de Ronde A. 1995; A single mutation within the V3 envelope neutralization domain of feline immunodeficiency virus determines its tropism for CRFK cells. Journal of Virology 69:4752–4757
    [Google Scholar]
  42. Wain-Hobson S. 1996; HIV. One on one meets two. Nature 384:117–118
    [Google Scholar]
  43. Watkins B. A., Dorn H. H., Kelly W. B., Armstrong R. C., Potts B. J., Michaels F., Kufta C. V., Dubois-Dalcq M. 1990; Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249:549–553
    [Google Scholar]
  44. Wild C., Greenwell T., Matthews T. 1993; A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell–cell fusion. AIDS Research and Human Retroviruses 9:1051–1053
    [Google Scholar]
  45. Willett B. J., Picard L., Hosie M. J., Turner J. D., Adema K., Clapham P. R. 1997a; Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. Journal of Virology 71:6407–6415
    [Google Scholar]
  46. Willett B. J., Hosie M. J., Neil J. C., Turner J. D., Hoxie J. A. 1997b; Common mechanism of infection by lentiviruses. Nature 385:587
    [Google Scholar]
  47. Willett B. J., Adema K., Heveker N., Brelot A., Picard L., Alizon M., Turner J. D., Hoxie J. A., Peiper S., Neil J. C., Hosie M. J. 1998; The second extracellular loop of CXCR4 determines its function as a receptor for feline immunodeficiency virus. Journal of Virology 72:6475–6481
    [Google Scholar]
  48. Yamamoto J. K., Sparger E., Ho E. W., Andersen P. R., O’Connor T. P., Mandell C. P., Lowenstine L., Munn R., Pedersen N. C. 1988; Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. American Journal of Veterinary Research 49:1246–1258
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2639
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error