1887

Abstract

An investigation was undertaken of primate gene sequences from a novel endogenous retrovirus family, ERV-W, related to a new human endogenous retrovirus family (HERV-W) that includes multiple sclerosis-associated retrovirus (MSRV) sequences identified in particles recovered from monocyte cultures from patients with multiple sclerosis. The gene sequences of the ERV-W family were detected in hominoids and Old World monkeys, but not in New World monkeys, whereas ERV-W long terminal repeat-like elements were detected in all primates (hominoids, Old World monkeys and New World monkeys). Thirty-two gene sequences from hominoids and Old World monkeys showed a high degree of sequence identity to MSRV and other HERV-W sequences. Phylogenetic analysis indicated close relationships of gene sequences across primate species. The analysis suggests that the ERV-W family has evolved independently but in constrained patterns (‘parallel evolution’) in different primate species, including man. The ratio of synonymous to non- synonymous substitutions indicated that negative selective pressure is acting on CHW1-1 from chimpanzee, HBW6-6 from baboon and HWX5 from man, sequences that have no disruption by point mutation or insertions/deletions. Therefore, these gene sequences could be associated with an active provirus in primates. The findings indicate that the ERV-W family has continued to evolve in the course of the primate radiation and may include members with a capacity to influence gene function and possibly cause disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2613
1999-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802613a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2613&mimeType=html&fmt=ahah

References

  1. Akopov S. B., Nikolaev L. G., Khil P. P., Lebedev Y. B., Sverdlov E. D. 1998; Long terminal repeats of human endogenous retrovirus K family (HERV-K) specifically bind host cell nuclear proteins. FEBS Letters 421:229–233
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI- BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402
    [Google Scholar]
  3. Anderssen S., Sjøttem E., Svineng G., Johansen T. 1997; Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 234:14–30
    [Google Scholar]
  4. Baltimore D. 1970; RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211
    [Google Scholar]
  5. Blond J.-L., Beseme F., Duret L., Bouton O., Bedin F., Perron H., Mandrand B., Mallet F. 1999; Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. Journal of Virology 73:1175–1185
    [Google Scholar]
  6. Boeke J. D., Stoye J. P. 1997; Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In Retroviruses pp 343–435 Edited by Coffin J. M., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Brack-Werner R., Barton D. E., Werner T., Foellmer B. E., Leib-Mösch C., Francke U., Erfle V., Hehlmann R. 1989; Human SSAV-related endogenous retroviral element: LTR-like sequence and chromosomal localization to 18q21. Genomics 4:68–75
    [Google Scholar]
  8. Cohen M., Larsson E. 1988; Human endogenous retroviruses. Bioessays 9:191–196
    [Google Scholar]
  9. Conrad B., Weissmahr R. N., Boni J., Arcari R., Schupbach J., Mach B. 1997; A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90:303–313
    [Google Scholar]
  10. Crow T. J. 1984; A re-evaluation of the viral hypothesis: is psychosis the result of retroviral integration at a site close to the cerebral dominance gene?. British Journal of Psychiatry 145:243–253
    [Google Scholar]
  11. Deb P., Klempan T. A., O’Reilly R. L., Torrey E. F., Singh S. M. 1998; Studies on MS-related sequences identified by amplicon-based RDA from affected members of monozygotic twin pairs discordant for schizophrenia. Abstract from Fourth Annual Stanley Foundation Symposium on the Neurovirology and Neuroimmunology of Schizophrenia and Bipolar Disorder Washington, DC, USA:
    [Google Scholar]
  12. Di Cristofano A., Strazzullo M., Parisi T., La Mantia G. 1995; Mobilization of an ERV9 human endogenous retroviral element during primate evolution. Virology 213:271–275
    [Google Scholar]
  13. Garson J. A., Tuke P. W., Giraud P., Paranhos-Baccala G., Perron H. 1998; Detection of virion-associated MSRV- RNA in serum of patients with multiple sclerosis. Lancet 351:33
    [Google Scholar]
  14. Haltmeier M., Seifarth W., Blusch J., Erfle V., Hehlmann R., Leib-Mösch C. 1995; Identification of S71-related human endogenous retroviral sequences with full-length pol genes. Virology 209:550–560
    [Google Scholar]
  15. Kabát P., Tristem M., Opavsky R., Pastorek J. 1996; Human endogenous retrovirus HC2 is a new member of the S71 retroviral subgroup with a full-length pol gene. Virology 226:83–94
    [Google Scholar]
  16. Kim H.-S., Crow T. J. 1999; Isolation of novel human endogenous retrovirus HC2-like elements in human chromosomes. AIDS Research and Human Retroviruses 15:299–302
    [Google Scholar]
  17. Kim H.-S., Hirai H., Takenaka O. 1996; Molecular features of the TSPY gene of gibbons and Old World monkeys. Chromosome Research 4:500–506
    [Google Scholar]
  18. Kim H.-S., Chen Y., Lonai P. 1998; Complex regulation of multiple cytohesin-like genes in murine tissues and cells. FEBS Letters 433:312–316
    [Google Scholar]
  19. Kim H.-S., Takenaka O., Crow T. J. 1999a; Cloning and nucleotide sequence of retroposons specific to hominoid primates derived from an endogenous retrovirus (HERV-K. AIDS Research and Human Retroviruses 15:595–601
    [Google Scholar]
  20. Kim H.-S., Wadekar R. V., Takenaka O., Hyun B.-H., Crow T. J. 1999b; Phylogenetic analysis of HERV-K LTR-like elements in primates: presence in some New World monkeys and evidence of recent parallel evolution in these species and in Homo sapiens. Archives of Virology in press
    [Google Scholar]
  21. Kim H.-S., Wadekar R. V., Takenaka O., Winstanley C., Mitsunaga F., Kageyama T., Hyun B.-H., Crow T. J. 1999c; SINE-R.C2 (a Homo sapiens specific retroposon) is homologous to cDNA from post-mortem brain in schizophrenia and to two loci in the Xq21·3/Yp block linked to handedness and psychosis. American Journal of Medical Genetics (Neuropsychiatric Genetics) (in press)
    [Google Scholar]
  22. Kim H.-S., Takenaka O., Crow T. J. 1999d; Identification of human endogenous retrovirus HC2-like elements in primates. Folia Primatologica (in press)
    [Google Scholar]
  23. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120
    [Google Scholar]
  24. Kobayashi K., Nakahori Y., Miyake M., Matsumura K., Kondo-lida E., Nomura Y., Segawa M., Yoshioka M., Saito K., Osawa M., Hamano K., Sakakihara Y., Nonaka I., Nakagome Y., Kanazawa I., Nakamura Y., Tokunaga K., Toda T. 1998; An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392
    [Google Scholar]
  25. Kumar S., Tamura K., Nei M. 1993 MEGA: molecular evolutionary genetics analysis, version 1.01 Pennsylvania State University; University Park, PA 16802, USA:
    [Google Scholar]
  26. La Mantia G., Maglione D., Pengue G., Di Cristofano A., Simeone A., Lanfrancone L., Lania L. 1991; Identification and characterization of novel human endogenous retroviral sequences preferentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Research 19:1513–1520
    [Google Scholar]
  27. Lan M. S., Mason A., Coutant R., Chen Q. Y., Vargas A., Rao J. S., Gomez R., Chalew S., Garry R., Maclaren N. K. 1998; HERV-K10s and immune- mediated (type 1) diabetes. Cell 95:14–16
    [Google Scholar]
  28. Leib-Mösch C., Haltmeier M., Werner T., Geigl E.-M., Brack-Werner R., Francke U., Erfle V., Hehlmann R. 1993; Genomic distribution and transcription of solitary HERV-K LTRs. Genomics 18:261–269
    [Google Scholar]
  29. Li W.-H., Wu C.-I., Luo C.-C. 1985; A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2:150–174
    [Google Scholar]
  30. Löwer R., Löwer J., Kurth R. 1996; The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proceedings of the National Academy of Sciences USA 93:5177–5184
    [Google Scholar]
  31. Löwer R., Tonjes R. R., Boller K., Denner J., Kaiser B., Phelps R. C., Löwer J., Kurth R., Badenhoop K., Donner H., Usadel K. H., Miethke T., Lapatschek M., Wagner H. 1998; Development of insulin-dependent diabetes mellitus does not depend on specific expression of the human endogenous retrovirus HERV-K. Cell 95:11–14
    [Google Scholar]
  32. Mager D. L., Freeman J. D. 1995; HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage. Virology 213:395–404
    [Google Scholar]
  33. Mager D. L., Henthorn P. S. 1984; Identification of a retrovirus-like repetitive element in human DNA. Proceedings of the National Academy of Sciences USA 81:7510–7514
    [Google Scholar]
  34. Martin M. A., Bryan T., Rasheed S., Khan A. S. 1981; Identification and cloning of endogenous retroviral sequences present in human DNA. Proceedings of the National Academy of Sciences USA 78:4892–4896
    [Google Scholar]
  35. Medstrand P., Mager D. L. 1998; Human-specific integrations of the HERV-K endogenous retrovirus family. Journal of Virology 72:9782–9787
    [Google Scholar]
  36. Murphy V. J., Harrison L. C., Rudert W. A., Luppi P., Trucco M., Fierabracci A., Biro P. A., Bottazzo G. F. 1998; Retroviral superantigens and type 1 diabetes mellitus. Cell 95:9–11
    [Google Scholar]
  37. Perron H., Seigneurin J. M. 1999; Human retroviral sequences associated with extracellular particles in auto-immune diseases: epiphenomenon or possible role in aetiopathogenesis?. Microbes and Infection (in press)
    [Google Scholar]
  38. Perron H., Firouzi R., Tuke P., Garson J. A., Michel M., Beseme F., Bedin F., Mallet F., Marcel E., Seigneurin J. M., Mandrand B. 1997; Cell cultures and associated retroviruses in multiple sclerosis. Collaborative Research Group on MS. Acta Neurologica Scandinavica Supplementum 169:22–31
    [Google Scholar]
  39. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Seidl C., Donner H., Petershofen E., Usadel K. H., Seifried E., Kaltwasser J. P., Badenhoop K. 1999; An endogenous retroviral long terminal repeat at the HLA-DQB1 gene locus confers susceptibility to rheumatoid arthritis. Human Immunology 60:63–68
    [Google Scholar]
  42. Steele P. E., Martin M. A., Rabson A. B., Bryan T., O’Brien S. J. 1986; Amplification and chromosomal dispersion of human endogenous retroviral sequences. Journal of Virology 59:545–550
    [Google Scholar]
  43. Steinhuber S., Brack M., Hunsmann G., Schwelberger H., Dierich M. P., Vogetseder W. 1995; Distribution of human endogenous retrovirus HERV-K genomes in humans and different primates. Human Genetics 96:188–192
    [Google Scholar]
  44. Sverdlov E. D. 1998; Perpetually mobile footprints of ancient infections in the human genome. FEBS Letters 428:1–6
    [Google Scholar]
  45. Temin H. M., Mizutani S. 1970; RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213
    [Google Scholar]
  46. Varmus H. E. 1982; Form and function of retroviral proviruses. Science 216:812–820
    [Google Scholar]
  47. Zhu Z.-B., Jian B., Volanakis J. E. 1994; Ancestry of SINE- R.C2 a human-specific retroposon. Human Genetics 93:545–551
    [Google Scholar]
  48. Zsíros J., Jebbink M. F., Lukashov V. V., Voûte P. A., Berkhout B. 1998; Evolutionary relationships within a subgroup of HERV-K-related human endogenous retroviruses. Journal of General Virology 79:61–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2613
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error