1887

Abstract

The virus-encoded RNA-dependent RNA polymerase (RdRp), which is required for replication of the positive-strand RNA genome, is a key enzyme of members of the virus family . By using heterologously expressed proteins, we demonstrate that the 77 kDa NS5B protein of two pestiviruses, bovine viral diarrhoea virus and classical swine fever virus, and the 100 kDa NS5 protein of the West Nile flavivirus possess RdRp activity . As originally shown for the RdRp of hepatitis C virus, RNA synthesis catalysed by the pestivirus and flavivirus enzymes is strictly primer- dependent . Accordingly, initiation of RNA polymerization on homopolymeric RNAs and heteropolymeric templates, the latter with a blocked 3′-hydroxyl group, was found to be dependent on the presence of complementary oligonucleotide primer molecules. On unblocked heteropolymeric templates, including authentic viral RNAs, the RdRps were shown to initiate RNA synthesis via intramolecular priming at the 3′-hydroxyl group of the template and ‘copy-back’ transcription, thus yielding RNase- resistant hairpin molecules. Taken together, the RdRps of different members of the were demonstrated to exhibit a common reactivity profile , typical of nucleic acid- polymerizing enzymes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2583
1999-10-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802583a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2583&mimeType=html&fmt=ahah

References

  1. Argos P.. 1988; A sequence motif in many polymerases. Nucleic Acids Research16:9909–9916
    [Google Scholar]
  2. Ball L. A.. 1995; Requirements for the self-directed replication of flock house virus RNA 1. Journal of Virology69:720–727
    [Google Scholar]
  3. Behrens S.-E., Tomei L., De Francesco R.. 1996; Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO Journal15:12–22
    [Google Scholar]
  4. Behrens S.-E., Grassmann C. W., Thiel H.-J., Meyers G., Tautz N.. 1998; Characterization of an autonomous subgenomic pestivirus RNA replicon. Journal of Virology72:2364–2372
    [Google Scholar]
  5. Bienz K., Egger D., Pfister T., Troxler M.. 1992; Structural and functional characterization of the poliovirus replication complex. Journal of Virology66:2740–2747
    [Google Scholar]
  6. Blight K. J., Rice C. M.. 1997; Secondary structure determination of the conserved 98-base sequence at the 3′ terminus of hepatitis C virus genome RNA. Journal of Virology71:7345–7352
    [Google Scholar]
  7. Blumenthal T., Carmichael G. G.. 1979; RNA replication: function and structure of Qβ-replicase. Annual Review of Biochemistry48:525–548
    [Google Scholar]
  8. Brinton M. A., Fernandez A. V., Dispoto J. H.. 1986; The 3′- nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology153:113–121
    [Google Scholar]
  9. Castle E., Leidner U., Nowak T., Wengler G., Wengler G.. 1986; Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Virology149:10–26
    [Google Scholar]
  10. Cazenave C., Uhlenbeck O. C.. 1994; RNA template- directed RNA synthesis by T7 RNA polymerase. Proceedings of the National Academy of Sciences USA91:6972–6976
    [Google Scholar]
  11. Chen C.-J., Kuo M.-D., Chien L.-J., Hsu S.-L., Wang Y.-M., Lin J. H.. 1997; RNA–protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. Journal of Virology71:3466–3473
    [Google Scholar]
  12. Chu P. W. G., Westaway E. G.. 1985; Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology140:68–79
    [Google Scholar]
  13. De Francesco R., Behrens S.-E., Tomei L., Altamura S., Jiricny J.. 1996; RNA-dependent RNA polymerase of hepatitis C virus. Methods in Enzymology275:58–67
    [Google Scholar]
  14. Francki R. I., Fauquet D. L., Knudson D. L., Brown F.. 1991; Classification and nomenclature of viruses. Archives of Virology Supplementum2:223–233
    [Google Scholar]
  15. Gong Y., Trowbridge R., Macnaughton T. B., Westaway E. G., Shannon A. D., Gowans E. J.. 1996; Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus. Journal of General Virology77:2729–2736
    [Google Scholar]
  16. Grun J. B., Brinton M. A.. 1986; Characterization of West Nile virus RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferases in cell-free extracts. Journal of Virology60:1113–1124
    [Google Scholar]
  17. Hayes R. J., Buck K. W.. 1990; Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell63:363–368
    [Google Scholar]
  18. Houghton M.. 1996; Hepatitis C viruses. In Fields Virology pp1035–1058 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  19. Jin L., Peterson D. L.. 1995; Expression, isolation, and characterization of the hepatitis C virus ATPase/RNA helicase. Archives of Biochemistry and Biophysics323:47–53
    [Google Scholar]
  20. Kapoor M., Zhang L., Ramachandra M., Kusukawa J., Ebner K. E., Padmanabhan R.. 1995; Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. Journal of Biological Chemistry270:19100–19106
    [Google Scholar]
  21. Khromykh A. A., Westaway E. G.. 1997; Subgenomic replicons of the flavivirus Kunjin: construction and applications. Journal of Virology71:1497–1505
    [Google Scholar]
  22. Konarska M. M., Sharp P. A.. 1989; Replication of RNA by the DNA-dependent RNA polymerase of phage T7. Cell57:423–431
    [Google Scholar]
  23. Lemm J. A., Bergqvist A., Read C. M., Rice C. M.. 1998; Template-dependent initiation of Sindbis virus RNA replication in vitro. Journal of Virology72:6546–6553
    [Google Scholar]
  24. Lohmann V., KÖrner F., Herian U., Bartenschlager R.. 1997; Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. Journal of Virology71:8416–8428
    [Google Scholar]
  25. Meyers G., Thiel H.-J., Rümenapf T.. 1996; Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. Journal of Virology70:1588–1595
    [Google Scholar]
  26. Miller R. H., Purcell R. H.. 1990; Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proceedings of the National Academy of Sciences USA87:2057–2061
    [Google Scholar]
  27. Monath T. P., Heinz F. X.. 1996; Flaviviruses. In Fields Virology pp961–1034 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  28. Mondelli M. U., Cerino A., Boender P., Oudshoorn P., Middeldorp J., Fipaldini C., La Monica N., Habets W.. 1994; Significance of the immune response to a major, conformational B-cell epitope on the hepatitis C virus NS3 region defined by a human monoclonal antibody. Journal of Virology68:4829–4836
    [Google Scholar]
  29. Neufeld K. L., Richards O. C., Ehrenfeld E.. 1991; Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. Journal of Biological Chemistry266:24212–24219
    [Google Scholar]
  30. Paul A. V., van Boom J. H., Filippov D., Wimmer E.. 1998; Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature393:280–284
    [Google Scholar]
  31. Rice C. M.. 1996; Flaviviridae : the viruses and their replication. In Fields Virology pp931–959 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  32. Sankar S., Porter A. G.. 1991; Expression, purification, and properties of recombinant encephalomyocarditis virus RNA-dependent RNA polymerase. Journal of Virology65:2993–3000
    [Google Scholar]
  33. Senkevich T. G., Cumakov I. M., Lipskaya G. Y., Agol V. I.. 1980; Palindrome-like dimers of double-stranded RNA of encephalomyocarditis virus. Virology102:339–348
    [Google Scholar]
  34. Tan B.-H., Fu J., Sugrue R. J., Yap E.-H., Chan Y.-C., Tan Y. H.. 1996; Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA- dependent RNA polymerase activity. Virology216:317–325
    [Google Scholar]
  35. Tautz N., Meyers G., Stark R., Dubovi E. J., Thiel H.-J.. 1996; Cytopathogenicity of a pestivirus correlates with a 27-nucleotide insertion. Journal of Virology70:7851–7858
    [Google Scholar]
  36. Thiel H.-J., Plagemann P. G. W., Moennig V.. 1996; Pestiviruses. In Fields Virology pp1059–1073 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  37. Tomei L., Failla C., Santolini E., De Francesco R., La Monica N.. 1993; NS3 is a serine protease required for processing of hepatitis C virus polyprotein. Journal of Virology67:4017–4026
    [Google Scholar]
  38. Tsunasawa S., Stewart J. W., Sherman F.. 1985; Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. Journal of Biological Chemistry260:5382–5391
    [Google Scholar]
  39. Warrener P., Collett M. S.. 1995; Pestivirus NS3 (p80) protein possesses RNA helicase activity. Journal of Virology69:1720–1726
    [Google Scholar]
  40. Wengler G., Castle E.. 1986; Analysis of structural properties which possibly are characteristic for the 3′-terminal sequence of the genome RNA of flaviviruses. Journal of General Virology67:1183–1188
    [Google Scholar]
  41. Wengler G., Wengler G.. 1991; The carboxy-terminal part of the NS3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology184:707–715
    [Google Scholar]
  42. Westaway E. G.. 1987; Flavivirus replication strategy. Advances in Virus Research33:45–90
    [Google Scholar]
  43. Wu S. X., Ahlquist P., Kaesberg P.. 1992; Active complete in vitro replication of nodavirus RNA requires glycerophospholipid. Proceedings of the National Academy of Sciences, USA89:11136–11140
    [Google Scholar]
  44. Young D. C., Tuschall D. M., Flanegan J. B.. 1985; Poliovirus RNA- dependent RNA polymerase and host cell protein synthesize product RNA twice the size of poliovirion RNA in vitro. Journal of Virology54:256–264
    [Google Scholar]
  45. Yu H., Grassmann C. W., Behrens S.-E.. 1999; Sequence and structural elements at the 3′ terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication. Journal of Virology73:3638–3648
    [Google Scholar]
  46. Zhong W., Gutshall L. L., Del Vecchio A. M.. 1998; Identification and characterization of an RNA-dependent RNA polymerase activity within the nonstructural protein 5B region of bovine viral diarrhea virus. Journal of Virology72:9365–9369
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2583
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2583
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error