1887

Abstract

The evolution of rabies viruses of predominantly European origin was studied by comparing nucleotide sequences of the nucleoprotein and glycoprotein genes, and by typing isolates using RFLP. Phylogenetic analysis of the gene sequence data revealed a number of distinct groups, each associated with a particular geographical area. Such a pattern suggests that rabies virus has spread westwards and southwards across Europe during this century, but that physical barriers such as the Vistula river in Poland have enabled localized evolution. During this dispersal process, two species jumps took place – one into red foxes and another into raccoon dogs, although it is unclear whether virus strains are preferentially adapted to particular animal species or whether ecological forces explain the occurrence of the phylogenetic groups.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-10-2545
1999-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/10/0802545a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-10-2545&mimeType=html&fmt=ahah

References

  1. Amengual B., Whitby J. E., King A., Serra Cobo J., Bourhy H. 1997; Evolution of European bat lyssaviruses. Journal of General Virology 78:2319–2328
    [Google Scholar]
  2. Atanasiu P., Gamet A., Gravière P., Le Guilloux M., Guillon J. C., Vallée A. 1968; Reápparition de la rage en France. Premier cas chez un renard dans la Moselle . Bulletin de l’Académie Vétérinaire. XLI:161–163
    [Google Scholar]
  3. Barbier A. 1929 Les Sources de la Virulence Rabique. Histoire d’une Epizootie de Rage sur le Renard et le Blaireau dans la Région Dijonnaise pp 253 Dijon: Imprimerie Bernigaud et Privat;
  4. Benmansour A., Brahimi M., Tuffereau C., Coulon P., Lafay F., Flamand A. 1992; Rapid sequence evolution of street rabies glycoprotein is related to the highly heterogeneous nature of the viral population. Virology 187:33–45
    [Google Scholar]
  5. Blancou J., Aubert M. F. A. 1997; Transmission du virus de la rage: importance de la barrière d’espèce. Bulletin de l’Académie Nationale de Médecine 181:301–312
    [Google Scholar]
  6. Blancou J., Aubert M. F. A., Soulebot J. P. 1983; Différences dans le pouvoir pathogène de souches de virus rabique adaptées au renard ou au chien. Annales de l’Institut Pasteur Virology 134E:523–531
    [Google Scholar]
  7. Blancou J., Aubert M. F. A., Artois M. 1991; Fox rabies. In The Natural History of Rabies pp 257–290 Edited by Baer G. M. Boca Raton: CRC Press;
    [Google Scholar]
  8. Bourhy H., Kissi B., Lafon M., Sacramento D., Tordo N. 1992; Antigenic and molecular characterization of bat rabies virus in Europe. Journal of Clinical Microbiology 30:2419–2426
    [Google Scholar]
  9. Bourhy H., Kissi B., Tordo N. 1993; Molecular diversity of the lyssavirus genus. Virology 194:70–81
    [Google Scholar]
  10. Dietzschold B., Wunner W. H., Wiktor T. J., Lopes A. D., Lafon M., Smith C. L., Koprowski H. 1983; Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proceedings of the National Academy of Sciences, USA 80:70–74
    [Google Scholar]
  11. Domingo E., Holland J. J. 1994; Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses pp 161–184 Edited by Morse S. S. New York: Raven Press;
    [Google Scholar]
  12. Gould A. R., Hyatt A. D., Lunt R., Kattenbelt J. A., Hengstberger S., Blacksell S. D. 1998; Characterization of a novel lyssavirus isolated from Pteropid bats in Australia. Virus Research 54:165–187
    [Google Scholar]
  13. Ishiko H., Takeda N., Miyamura K., Kato N., Tanimura M., Lin K.-H., Yin-Murphy M., Tam J. S., Mu G.-F., Yamazaki S. 1992; Phylogenetic analysis of a coxsackievirus A 24 variant: the most recent worldwide pandemic was caused by progenies of a virus prevalent around 1981. Virology 187:748–759
    [Google Scholar]
  14. Jaujou M. 1949; L’infection rabique en Corse au cours de l’année 1946. Académie Nationale de Médecine 132:128–130
    [Google Scholar]
  15. Kissi B., Tordo N., Bourhy H. 1995; Genetic polymorphism in the rabies virus nucleoprotein gene. Virology 209:526–537
    [Google Scholar]
  16. Kissi B., Badrane H., Audry L., Lavenu A., Tordo N., Brahimi M., Bourhy H. 1999; Dynamics of rabies virus quasispecies during serial passages in heterologous hosts. Journal of General Virology 80:2041–2050
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 1993 MEGA: molecular evolutionary genetic analysis, version 1.0 The Pennsylvania State University; University Park, PA 16802, USA:
    [Google Scholar]
  18. Maddison W. P., Maddison D. R. 1992 MacClade: analysis of phylogeny and character evolution, version 3.0 Sinauer Associates; Sunderland, MA, USA:
    [Google Scholar]
  19. Nadin-Davis S. A., Casey G. A., Wandeler A. I. 1994; A molecular epidemiological study of rabies virus in central Ontario and western Quebec. Journal of General Virology 75:2575–2583
    [Google Scholar]
  20. Nee S., May R. M., Harvey P. H. 1994; The reconstructed evolutionary process. Philosophical Transactions of the Royal Society of London Series B 344:305–311
    [Google Scholar]
  21. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and non synonymous nucleotide substitutions. Molecular Biology and Evolution 3:418–426
    [Google Scholar]
  22. Nel L., Jacobs J., Jaftha J., Courteney M. 1997; Natural spillover of a distinctly Canidae-associated biotype of rabies virus into an expanded wildlife host range in Southern Africa. Virus Genes 15:79–82
    [Google Scholar]
  23. Nickels M. S., Hunt D. M. 1994; Identification of an amino acid change that affects N protein function in vesicular stomatitis virus. Journal of General Virology 75:3591–3595
    [Google Scholar]
  24. Nowak R. M., Paradiso J. L. 1983 Walker’s Mammals of the World vol. II, 4th edn. Baltimore: The Johns Hopkins University Press;
  25. Parrish C. R. 1994; The emergence and evolution of canine parvovirus – an example of recent host range mutation. Virology 5:121–132
    [Google Scholar]
  26. Petrovic M. 1987; Urban and sylvatic rabies in Yugoslavia. Rabies Bulletin Europe 4:16–18
    [Google Scholar]
  27. Poch O., Tordo N., Keith G. 1988; Sequence of the 3386 3′ nucleotides of the genome of the AVO1 strain rabies virus: structural similarities in the protein regions involved in transcription. Biochimie 70:1018–1029
    [Google Scholar]
  28. Rambaut A., Grassly N. C. 1997; Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. CABIOS 13:235–238
    [Google Scholar]
  29. Rambaut A., Harvey P. H., Nee S. 1997; End-Epi: an application for inferring phylogenetic and population dynamical processes from molecular sequences. CABIOS 13:303–306
    [Google Scholar]
  30. Rupprecht C. E., Smith J. S. 1994; Raccoon rabies: the re-emergence of an epizootic in a densely populated area. Seminars in Virology 5:155–164
    [Google Scholar]
  31. Sacramento D., Bourhy H., Tordo N. 1991; PCR technique as an alternative method for diagnosis and molecular epidemiology of rabies virus. Molecular and Cellular Probes 6:229–240
    [Google Scholar]
  32. Sacramento D., Badrane H., Bourhy H., Tordo N. 1992; Molecular epidemiology of rabies in France: comparison with vaccine strains. Journal of General Virology 73:1149–1158
    [Google Scholar]
  33. Seroka D. 1968; The distribution of stationary foci of rabies in wild animals in Poland. Epidemiological Review (English Translation of Przeglad Epidemiologiczny 22:66–75
    [Google Scholar]
  34. Smith J. S., Orciari L. A., Yager P., Seidel H. D., Warner C. K. 1992; Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. Journal of Infectious Diseases 166:296–307
    [Google Scholar]
  35. Smith J. S., Orciari L. A., Yager P. 1995; Molecular epidemiology of rabies in the United States. Seminars in Virology 6:387–400
    [Google Scholar]
  36. Steck F., Wandeler A. 1980; The epidemiology of fox rabies in Europe. Epidemiologic Reviews 2:71–96
    [Google Scholar]
  37. StÖhr K., StÖhr P., Karge E. P. 1992; Isolierung atypischer Tollwutfeld-Viren in Ostdeutschland. Tieräztliche Umschau 47:820–824
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTALW: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  39. Thoulouze M.-I., Lafage M., Schachner M., Hartmann U., Cremer H., Lafon M. 1998; The neural cell adhesion molecule is a receptor for rabies virus. Journal of Virology 72:7181–7190
    [Google Scholar]
  40. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1986; Walking along the rabies genome: is the large G–L intergenic region a remnant gene?. Proceedings of the National Academy of Sciences, USA 83:3914–3918
    [Google Scholar]
  41. Tordo N., Badrane H., Bourhy H., Sacramento D. 1993; Molecular epidemiology of lyssaviruses: focus on the glycoprotein and pseudogenes. Onderstepoort Journal of Veterinary Research 60:315–323
    [Google Scholar]
  42. Tuffereau C., Leblois H., Bénéjean J., Coulon P., Lafay F., Flamand A. 1989; Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172:206–212
    [Google Scholar]
  43. Tuffereau C., Bénéjean J., Roque Alfonso A. M., Flamand A., Fishman M. C. 1998; Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells. Journal of Virology 72:1085–1091
    [Google Scholar]
  44. Villaverde A., Martinez M. A., Sobrino F., Dopazo J., Moya A., Domingo E. 1991; Fixation of mutations at the VP1 gene of foot-and-mouth disease virus. Can quasispecies define a transient molecular clock?. Gene 103:147–153
    [Google Scholar]
  45. Weaver S. C., Hagenbaugh A., Bellew A., Gousset L., Mallampalli V., Holland J. J., Scott T. W. 1994; Evolution of alphaviruses in the eastern equine encephalomyelitis complex. Journal of Virology 68:158–169
    [Google Scholar]
  46. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. 1992; Evolution and ecology of influenza A viruses. Microbiological Reviews 56:152–179
    [Google Scholar]
  47. Zanotto P. M. de A., Gao G. F., Gritsun T. S., Marin M. S., Jiang W. R., Venugopal K., Reid H. W., Gould E. A. 1995; An arbovirus cline across the northern hemisphere. Virology 210:152–159
    [Google Scholar]
  48. Zanotto P. M. de A., Gould E. A., Gao G. F., Harvey P. H., Holmes E. C. 1996; Population dynamics of flaviviruses revealed by molecular phylogenies. Proceedings of the National Academy of Sciences, USA 93:548–553
    [Google Scholar]
  49. Zeeti R., Rosati T. 1966; Informations relatives à la situation de la rage en Italie et les mesures employées pour la combattre. Bulletin de l’Office International des Epizooties 65:37–39
    [Google Scholar]
  50. Zunker M. 1954; L’importance des renards dans la propagation de la rage en Allemagne. Bulletin de l’Office International des Epizooties 354:1–11
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-10-2545
Loading
/content/journal/jgv/10.1099/0022-1317-80-10-2545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error