1887

Abstract

The foamy viruses (FVs) are a genus of complex retroviruses that has recently been found to possess several novel molecular features. There is increasing interest in the development of FVs as novel vectors for gene delivery. As there are remarkably few published studies of FV proteins, these recent findings prompted us to predict the structural features of FV glycoproteins with the aid of computer programs. We analysed all seven available FV Env sequences, a greater number of sequences than in previously published analyses. The relative rates of change for FV structural proteins were Pol < Env < Gag in increasing order, which differs from all other retroviruses. We determined that this difference is primarily caused by a higher relative rate of change for FV Gag proteins. We analysed the functional domains of FV glycoproteins and found that their structural organization was generally similar to other retroviruses. Putative structures were identified for the signal peptide, cleavage site, fusion peptide, membrane-spanning domain and the unique endoplasmic reticulum retrieval signal. Based on the predicted secondary structure of the transmembrane glycoprotein (TM) subunit, gp47, we also identified a unique prolonged central ‘sheets and loops’ region as the dominant feature of an unusually lengthy TM ectodomain. This lengthy central domain was flanked at each end by alpha-helices. The predictions reported here will stimulate and facilitate experimental approaches to better understand the structure and function of FV glycoproteins, and should assist in the planning and development of FV vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-1-245
1999-01-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/1/0800245a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-1-245&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402
    [Google Scholar]
  2. Brasseur R., Cornet B., Burny A., Vandenbranden M., Ruysschert J. M. 1988; Mode of insertion into a lipid membrane of the N-terminal HIV gp41 peptide segment. AIDS Research and Human Retroviruses 4:83–90
    [Google Scholar]
  3. Brasseur R., Vandenbranden M., Cornet B., Burny A., Ruysschert J.-M. 1990; Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. Biochimica et Biophysica Acta 1029:267–273
    [Google Scholar]
  4. Bullough P., Hughson F., Skehel J., Wiley D. 1994; Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  5. Callebaut I., Labesse G., Durand P., Poupon A., Canard L., Chomilier J., Henrissat B., Mornon J. P. 1997; Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cellular and Molecular Life Sciences 53:621–645
    [Google Scholar]
  6. Chambers P., Pringle C. R., Easton A. J. 1990; Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Journal of General Virology 71:3075–3080
    [Google Scholar]
  7. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273
    [Google Scholar]
  8. Coffin J. 1986; Genetic variation in AIDS viruses. Cell 46:1–4
    [Google Scholar]
  9. Dias H. W., Aboud M., Flugel R. M. 1996; Analysis of the phylogenetic placement of different spumaretroviral genes reveals complex pattern of foamy virus evolution. Virus Genes 11:183–190
    [Google Scholar]
  10. Durell S. R., Martin S., Ruysschaert J.-M., Shai Y., Blumenthal R. 1997; What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (Review). Molecular Membrane Biology 14:97–112
    [Google Scholar]
  11. Eisenberg D. 1984; Three-dimensional structure of membrane and surface proteins. Annual Review of Biochemistry 53:595–623
    [Google Scholar]
  12. Enssle J., Jordan I., Maurer B., Rethwilm A. 1996; Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proceedings of the National Academy of Sciences, USA 93:4137–4141
    [Google Scholar]
  13. Fass D., Kim P. S. 1996; Structure of Moloney murine virus envelope domain at 1*7 A resolution. Nature Structural Biology 3:365–369
    [Google Scholar]
  14. Flügel R. M., Rethwilm A., Maurer B., Darai G. 1987; Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO Journal 6:2077–2084
    [Google Scholar]
  15. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. 1987; Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Letters 224:149–155
    [Google Scholar]
  16. Gallaher W. R. 1987; Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50:327–328
    [Google Scholar]
  17. Gallaher W., Ball J., Garry R. F., Griffin M. C., Montelaro R. C. 1989; A general model for the transmemebrane protein of HIV and other retroviruses. AIDS Research and Human Retroviruses 5:431–440
    [Google Scholar]
  18. Gatot J. S., Callebaut I., Gaboriaud C., Mornon J. P., Portetelle D., Burny A., Kerkhofs P., Kettmann R., Willems L. 1998; Conservative mutations in the immunosuppressive region of the bovine leukemia virus transmembrane protein affect fusion but not infectivity in vivo. Journal of Biological Chemistry 273:12870–12880
    [Google Scholar]
  19. Genetics Computer Group 1997; Program Manual for the Wisconsin Package, Version 9.1. 575 Science Drive, Madison; Wisconsin:
    [Google Scholar]
  20. Goepfert P. A., Wang G., Mulligan M. J. 1995; Identification of an ER retrieval signal in a retroviral glycoprotein. Cell 82:543–544
    [Google Scholar]
  21. Goepfert P. A., Ritter G. D., Gbkaima A., Zhang Y., Hahn B. H., Mulligan M. J. 1996; Analysis ofWestAfrican hunters forfoamy virus infections. AIDS Research and Human Retroviruses 12:1725–1730
    [Google Scholar]
  22. Goepfert P. A., Shaw K. L., Mulligan M. J. 1997; A sorting motif localizes the foamy virus glycoprotein to the endoplasmic reticulum. Journal of Virology 71:778–784
    [Google Scholar]
  23. Heneine W., Switzer W. M., Sandstrom P., Brown J., Vedapuri S., Schable C. A., Khan A. S., Lerch N. W., Schweizer M., Neumann-Haefelin D., Chapman L. E., Folks T. M. 1998; Identification of a human population infected with simian foamy viruses. Nature Medicine 4:403–407
    [Google Scholar]
  24. Herchenröder O., Renne R., Loncar D., Cobb E. K., Murthy K. K., Schneider J., Mergia A., Luciw P. A. 1994; Isolation, cloning, and sequencing of simian foamy viruses from chimpanzee (SFVcpz): high homology to human foamy virus (HFV). Virology 201:187–199
    [Google Scholar]
  25. Holzschu D. L., Delaney M. A., Renshaw R. W., Casey J. W. 1998; The nucleotide sequence and spliced pol mRNA levels ofthe non-primate spumavirus bovine foamy virus. Journal of Virology 72:2177–2182
    [Google Scholar]
  26. Huang Y., Khorchid A., Wang J., Parniak M. A., Darlix J. L., Wainberg M. A., Kleiman L. 1997; Effect of mutations in the nucleocapsid protein (NCp7) upon Pr160(gag pol) and tRNA(Lys) incorporation into human immunodeficiency virus type 1. Journal of Virology 71:4378–4384
    [Google Scholar]
  27. Hunter E., Swanstrom R. 1990; Retrovirus envelope glycoproteins. Current Topics in Microbiology and Immunology 157:187–253
    [Google Scholar]
  28. Jackson M. R., Nilsson T., Peterson P. A. 1990; Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO Journal 9:3153–3162
    [Google Scholar]
  29. Jones M. K., Anantharamaiah G. M., Segrest J. P. 1992; Computer programs to identify and classify amphipathic a-helical domains. Journal of Lipid Research 33:287–296
    [Google Scholar]
  30. Kimura M. 1983; The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press;
    [Google Scholar]
  31. Kozak M. 1989; The scanning model for translation: an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  32. Kupiec J.-J., Kay A., Hayat M., Ravier R., Peries J., Galibert F. 1991; Sequence analysis of the simian foamy virus type 1 genome. Gene 101:185–194
    [Google Scholar]
  33. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. 1990; Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 72:555–574
    [Google Scholar]
  34. Lewe G., Flügel R. M. 1990; Comparative analysis ofthe retroviral Pol and Env protein sequences reveal different evolutionary trees. Virus Genes 3:195–204
    [Google Scholar]
  35. Lim V. I. 1978; Polypeptide chain folding through a highly helical intermediate as a general principle of globular protein structure formation. FEBS Letters 89:10–14
    [Google Scholar]
  36. Livingstone C. D., Barton G. J. 1996; Identification of functional residues and secondary structure from protein multiple sequence alignment. Methods in Enzymology 266:497–512
    [Google Scholar]
  37. Löchelt M., Flugel R. M. 1995; The molecular biology of human and primate spuma retroviruses. In The Retroviridae vol 4 pp 239–292 Edited by Levy J. A. New York: Plenum Press;
    [Google Scholar]
  38. Löchelt M., Flugel R. M. 1996; The human foamy virus pol gene is expressed as a pro-Pol polyprotein and not as a Gag-Pol fusion protein. Journal of Virology 70:1033–1040
    [Google Scholar]
  39. Loh P. C. 1993; Spumaviruses. In The Retroviridae 2nd edn, pp 361–397 Edited by Levy J. A. New York: Plenum Press;
    [Google Scholar]
  40. McClure M. A., Johnson M. S., Feng D. F., Doolittle R. F. 1988; Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. Proceedings of the National Academy of Sciences, USA 85:2469–2473
    [Google Scholar]
  41. Matthews T. J., Wild C., Chen C., Bolognesi D. P., Greenberg M.L. 1994; Structural rearrangements in the transmembrane glycoprotein after receptor binding. Immunological Reviews 140:93–104
    [Google Scholar]
  42. Maurer B., Bannert H., Darai G., Flugel R. M. 1988; Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. Journal of Virology 62:1590–1597
    [Google Scholar]
  43. Mergia A., Shaw K. E. S., Lackner J. E., Luciw P. A. 1990; Relationship of the env genes and the endonuclease domain of the pol genes of simian foamy virus type 1 and human foamy virus. Journal of Virology 64:406–410
    [Google Scholar]
  44. Moebes A., Enssle J., Bieniasz P. D., Heinkelein M., Lindemann D., Bock M., McClure M. O., Rethwilm A. 1997; Human foamy virus reverse transcription that occurs late in the viral replication cycle. Journal of Virology 71:7305–7311
    [Google Scholar]
  45. Neumann-Haefelin D., Schweizer M. 1997; Nonhuman primate spumavirus infections among persons with occupational exposure. Morbidity and Mortality Weekly Report 46:129–131
    [Google Scholar]
  46. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10:1–6
    [Google Scholar]
  47. Nothwehr S. T., Gordon J. I. 1990; Targeting of proteins into the eukaryotic secretory pathway: signal peptide structure/function relationships. Bioessays 12:479–484
    [Google Scholar]
  48. Pearson W. R. 1996; Effective protein sequence comparison. Methods in Enzymology 266:227–258
    [Google Scholar]
  49. Pearson W. R., Lipman D. J. 1990; Improved tools for biological sequence analysis. Proceedings ofthe National Academy ofSciences, USA 85:2444–2448
    [Google Scholar]
  50. Perlman D., Halvorson H. P. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  51. Renne R., Friedl Schweizer M., Fleps U., Turek R., Neumann-Haefelin D. 1992; Genomic organization and expression of simian foam virus type 3 (SFV-3). Virology 186:597–608
    [Google Scholar]
  52. Renshaw R. W., Casey J. W. 1994; Transcriptional mapping of the 3′ end of the bovine syncytial virus genome. Journal of Virology 68:1021–1028
    [Google Scholar]
  53. Rost B. 1996; PHD: predicting one-dimensional protein structure by profile-based neural network. Methods in Enzymology 266:525–539
    [Google Scholar]
  54. Rost B., Sander C. 1993; Prediction of protein structure at better than 70% accuracy. Journal of Molecular Biology 232:584–599
    [Google Scholar]
  55. Rost B., Sander C. 1994a; Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72
    [Google Scholar]
  56. Rost B., Sander C. 1994b; Conservation and prediction of solvent accessibility in protein families. Proteins 20:216–226
    [Google Scholar]
  57. Rost B., Casadio R., Fariselli P., Sander C. 1995; Transmembrane helices predicted at 95% accuracy. Protein Science 4:521–533
    [Google Scholar]
  58. Russell R. B., Sternberg M. J. E. 1995; How good are we?. Current Biology 5:488–490
    [Google Scholar]
  59. Schiffer M., Edmundson A. B. 1967; Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal 7:121–135
    [Google Scholar]
  60. Schliephake A. W., Rethwilm A. 1994; Nuclear localization of foamy virus Gag precursor protein. Journal of Virology 68:4946–4954
    [Google Scholar]
  61. Schweizer M., Turek R., Hahn H., Schliephake A., Netzer K.-O., Eder G., Reinhardt M., Rethwilm A., Neumann-Haefelin D. 1995; Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus seroprevalence in humans. AIDS Research and Human Retroviruses 11:161–170
    [Google Scholar]
  62. Schweizer M., Falcone V., Gange J., Turek R., Neumann-Haefelin D. 1997; Simian foamy virus isolated from an accidentally infected human individual. Journal of Virology 71:4821–4824
    [Google Scholar]
  63. Shin J., Dunbrack R. L. Jr, Lee S., Strominger J. L. 1991; Signals for retention of transmembrane proteins in the endoplasmic reticulum studied with CD4 truncation mutants. Proceedings of the National Academy of Sciences, USA 88:1918–1922
    [Google Scholar]
  64. Vonèche V., Portetelle D., Kettmann R., Willems L., Limbach K., Paoletti E., Ruysschaert J.-M., Burny A., Brasseur R. 1992; Fusiogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion by means of oblique insertion in the lipid bilayer of their target cells. Proceedings of the National Academy of Sciences, USA 89:3810–3814
    [Google Scholar]
  65. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  66. Weiss R. A. 1998; Retroviral zoonoses. Nature Medicine 4:391–392
    [Google Scholar]
  67. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. 1997; Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430
    [Google Scholar]
  68. White J.M. 1990; Viral and cellular membrane fusion proteins. Annual Review of Physiology 52:675–697
    [Google Scholar]
  69. White J. M. 1992; Membrane fusion. Science 258:917–924
    [Google Scholar]
  70. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373
    [Google Scholar]
  71. Winkler I., Bodem J., Haas L., Zemba M., Delius H., Flower R., Flugel R., Lochelt M. 1997; Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. Journal of Virology 71:6727–6741
    [Google Scholar]
  72. Yu S. F., Baldwin D. N., Gwynn S. R., Yendapalli S., Linial M. L. 1996; Human foamy virus replication: a pathway distinct from that of retrovirus and hepadnaviruses. Science 271:1579–1582
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-1-245
Loading
/content/journal/jgv/10.1099/0022-1317-80-1-245
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error