1887

Abstract

Only two virus-neutralizing peptide microantibodies (MicroAbs) have been described and little is known about their mode of action. This report concerns a 17 amino acid cyclized MicroAb, derived from the third complementarity-determining region of the heavy chain of MAb F58 (IgG1), that recognizes the same minimum epitope in the V3 loop of the gp120 envelope protein of human immunodeficiency virus type 1 (HIV-1) as the MAb. The MicroAb was able to bind to and neutralize free virus particles. It was up to 5-fold more efficient in mass terms than F58 IgG and its neutralization rate on a molar basis was only 32-fold lower. The mechanism of neutralization of the MicroAb was also investigated. A high level of neutralization (99%) occurred without any significant decrease in attachment of virus to target C8166 cells. Neutralized virus attached to CD4, the HIV-1 primary receptor. Fusion of virions to cells was partially inhibited by the MicroAb, whereas F58 IgG has been shown to inhibit fusion significantly. Thus, neutralization by the MicroAb appears to be mediated, at least in part, by inhibition of fusion. Control peptides, in which the tyrosine at position 5 or 6 was deleted or changed to phenylalanine, showed no antiviral activity, attesting to the specificity of interaction of the MicroAb with the virion. It therefore appears that the MicroAb acts like an immunoglobulin. The data also show that the MicroAb/MAb F58 epitope on the V3 loop is not involved in attachment of virus to CD4 but is required for subsequent events in early infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-1-225
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/1/0800225a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-1-225&mimeType=html&fmt=ahah

References

  1. Åkerblom L., Hinkula J., Broliden P.-A., Makitalo B., Fridberger T., Rosen J., Villacres-Erikssen M., Morein B., Wahren B. 1990; Neutralizing cross-reactive and non-neutralizing monoclonal antibodies to HIV-1 gp120. AIDS 4:953–960
    [Google Scholar]
  2. Amit A., Mariuzza R. A., Phillips S. E. V., Poljak R. J. 1986; Threedimensional structure of an antigen-antibody complex at 2.8 A resolution. Science 233:747–753
    [Google Scholar]
  3. Armstrong S. J., Dimmock N. J. 1996; Varying temperature-dependence of post-attachment neutralization of human immunodeficiency virus type 1 by monoclonal antibodies to gp120: identification of a very early fusion-independent event as a neutralization target. Journal of General Virology 77:1397–1402
    [Google Scholar]
  4. Armstrong S. J., McInerney T. L., McLain L., Wahren B., Hinkula J., Levi M., Dimmock N. J. 1996; Two neutralizing anti-V3 monoclonal antibodies act by affecting different functions of human immunodeficiency virus type 1. Journal of General Virology 77:2931–2941
    [Google Scholar]
  5. Bourgeois C., Bour J. B., Aho L. S., Pothier P. 1998; Prophylactic administration of a complementarity-determining region from a neutralizing monoclonal antibody is effective against respiratory syncytial virus infection in BALB/c mice. Journal of Virology 72:807–810
    [Google Scholar]
  6. Chu T.-H. T., Dornburg R. 1997; Toward highly efficient cell-type-specific gene transfer with retroviral vectors displaying single-chain antibodies. Journal of Virology 71:720–725
    [Google Scholar]
  7. de Kruif J., van der Vuurst A.-R., Cilenti L., Boel E., van Ewijk W., Logtenberg T. 1996; New perspectives on recombinant human antibodies. Immunology Today 17:453–455
    [Google Scholar]
  8. Dimmock N. J. 1993; Neutralization of animal viruses. Current Topics in Microbiology and Immunology 183:1–149
    [Google Scholar]
  9. Dulbecco R., Vogt M., Strickland A. G. R. 1956; A study of the basic aspects of neutralization of two animal viruses, Western equine encephalitis virus and poliomyelitis virus. Virology 2:162–205
    [Google Scholar]
  10. Fontenot J. D., Zacharopoulos V. R., Phillips D. M. 1996; Proline-rich tandem repeats of antibody complementarity-determining regions bind and neutralize human immunodeficiency virus type 1 particles. Journal of Virology 70:6557–6562
    [Google Scholar]
  11. Goudsmit J., Geelen J., Keulen W., Notermans D., Kuiken C., Ramautarsing C., Smit L., Koole L., van Genderen M., Buck H., Sninsky J., Krone W. 1990; Characterization of the African HIV-1 isolate CBL-4 (RUT) by partial sequence analysis and virus neutralization with peptide antibody and antisense phosphate-methylated DNA. AIDS 4:559–564
    [Google Scholar]
  12. Healy D., Dianda L., Moore J. P., McDougal J. S., Moore M. J., Estess P., Buck D., Kwong P. D., Beverley P. C. L., Sattentau Q. J. 1990; Novel anti-CD4 monoclonal antibodies separate HIV infection and fusion of CD4+ cells from virus binding. Journal of Experimental Medicine 172:1233–1242
    [Google Scholar]
  13. Jarrin A., Andrieux A., Chapel A., Buchou T., Marguerie G. 1994; A synthetic peptide with anti-platelet activity derived from a CDR of an anti-GPIIb-IIIa antibody. FEBS Letters 354:169–172
    [Google Scholar]
  14. Krause R. M., Dimmock N. J., Morens D. M. 1997; Summary of antibody workshop: the role of humoral immunity in the treatment and prevention of emerging and extant infectious diseases. Journal of Infectious Diseases 176:549–559
    [Google Scholar]
  15. Levi M., Sallberg M., Ruden U., Herlyn D., Maruyama H., Wigzell H., Marks J., Wahren B. 1993; A complementarity-determining region synthetic peptide acts as a miniantibody and neutralizes human immunodeficiency virus type 1 in vitro . Proceedings of the National Academy of Sciences, USA 90:4374–4378
    [Google Scholar]
  16. Levy-Mintz P., Duan L., Zhang H., Hu B., Dornadula G., Zhu M., Kulkosky J., Bizub-Bender D., Skalka A. M., Pomerantz R. J. 1996; Intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase. Journal of Virology 70:8821–8832
    [Google Scholar]
  17. McInerney T. L., McLain L., Armstrong S. J., Dimmock N. J. 1997; A human IgG1 (b12) specific for the CD4 binding site of HIV-1 neutralizes by inhibiting the virus fusion entry process, but b12 Fab neutralizes by inhibiting a postfusion event. Virology 233:313–326
    [Google Scholar]
  18. McLain L., Dimmock N. J. 1994; Single- and multi-hit kinetics of immunoglobulin G neutralization of human immunodeficiency virus type 1 by monoclonal antibodies. Journal of General Virology 75:1457–1460
    [Google Scholar]
  19. Mason P., Berinstein A., Baxt B., Parsells R., Kang A., Rieder E. 1996; Cloning and expression of a single chain antibody fragment specific for foot-and-mouth disease virus. Virology 224:548–554
    [Google Scholar]
  20. Mhashilkar A. M., Bagley J., Chen S. Y., Szilvay A. M., Helland D. G., Marasco W. A. 1994; Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain antibodies. EMBO Journal 14:1542–1551
    [Google Scholar]
  21. Millar A. L., Jackson N. A. C., Dalton D., Jennings K. R., Levi M., Wahren B., Dimmock N. J. 1998; Rapid analysis of epitope-paratope interactions between HIV-1 and a 17-amino-acid neutralizing microantibody by electrospray ionisation mass spectrometry. European Journal of Biochemistry 258:164–169
    [Google Scholar]
  22. Moore J. P., Binley J. 1998; Envelope’s letters boxed into shape. Nature 393:630–631
    [Google Scholar]
  23. Posner M. R., Hideshima T., Cannon T., Mukherjee M., Mayer K. H., Byrn R. A. 1991; An IgG human monoclonal antibody that reacts with HIV-1/GP120, inhibits virus binding to cells, and neutralizes infection. Journal of Immunology 146:4325–4332
    [Google Scholar]
  24. Sattentau Q. J. 1998; HIV gp120: double lock strategy foils host defences. Structure 6:945–949
    [Google Scholar]
  25. Shaheen F., Duan L., Zhu M., Bagasra O., Pomerantz R. J. 1996; Targeting human immunodeficiency virus type 1 reverse transcriptase by intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle. Journal of Virology 70:3392–3400
    [Google Scholar]
  26. Somia N. V., Zoppe M., Verma I. M. 1995; Generation oftargeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proceedings of the National Academy of Sciences, USA 92:7570–7574
    [Google Scholar]
  27. Taub R., Gould R. J., Garsky V. M., Ciccarone T. M., Hoxie J., Friedman P. A., Shattil S. J. 1988; A monoclonal antibody against platelet fibrinogen receptor contains a sequence that mimics a receptor recognition domain in fibrinogen. Journal of Biological Chemistry 264:259–265
    [Google Scholar]
  28. Ugolini S., Mondor I., Parren P. W. H. I., Burton D. R., Tilley S. A., Klasse P. J., Sattentau Q. J. 1997; Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. Journal of Experimental Medicine 186:1287–1298
    [Google Scholar]
  29. Valenzuela A., Blanco J., Krust B., Franco R., Hovanessian A. G. 1997; Neutralizing antibodies against the V3 loop of human immunodeficiency virus type 1 gp120 block the CD4-dependent and -independent binding of virus to cells. Journal of Virology 71:8289–8298
    [Google Scholar]
  30. Ward S., Gussow D., Griffiths A. D., Jones P. T., Winter G. 1989; Binding activity of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli . Nature 341:544–546
    [Google Scholar]
  31. Weiss R. A., Clapham P. R. 1996; Hot fusion of HIV. Nature 381:647–648
    [Google Scholar]
  32. Williams W. V., Guy H. R., Rubin D. H., Robey F., Myers J. N., Kieber-Emmons T., Weiner D. B., Greene M. I. 1988; Sequences of the cell-attachment sites of reovirus type 3 and its anti-idiotypic/antireceptor antibody: modeling of their three-dimensional structures. Proceedings of the National Academy of Sciences, USA 85:6488–6492
    [Google Scholar]
  33. Williams W. V., Moss D. A., Kieber-Emmons T., Cohen J. A., Myers J. N., Weiner D. B., Greene M. I. 1989; Development ofbiologically active peptides based on antibody structure. Proceedings of the National Academy of Sciences, USA 86:5537–5541
    [Google Scholar]
  34. Winter G., Milstein C. 1991; Man-made antibodies. Nature 349:293–299
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-1-225
Loading
/content/journal/jgv/10.1099/0022-1317-80-1-225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error