1887

Abstract

CD8 T lymphocytes of asymptomatic human immunodeficiency virus type 1 (HIV-1) carriers (ACs) are capable of suppressing HIV-1 replication in CD4+ peripheral blood mononuclear cells (PBMC) by a variety of known and unknown mechanisms. In the present study, cell contact-dependent, major histocompatibility complex type I (MHC I)-unrestricted, CD8 cell-mediated suppression of HIV-1 LAI replication was detected. CD8 PBMC of ACs suppressed HIV-1 replication more efficiently in MHC I-matched CD4+ PBMC than in mismatched cells. However, even when MHC I was totally mismatched, CD8 cells still suppressed replication to a considerable extent in CD4+ PBMC. This MHC I-unrestricted, CD8 cell-mediated HIV-1 suppression required cell contact and was not effective against cells of the established T cell line ILT-KK. In contrast, MHC I-restricted HIV-1 suppression by CD8 T cells was detected when ILT-KK cells were used as a target. By using these systems, we examined MHC I-restricted and -unrestricted suppressive activities of CD8 cells in various donors in more detail. Although both types of CD8 cell-mediated HIV-1 suppression diminished at the advanced stage of the infection, MHC I-unrestricted suppression diminished earlier than MHC I-restricted suppression, in parallel with the decline in CD4+ T cells. These results suggest that suppression by the MHC I-restricted mechanism alone may fail to protect against CD4+ T-cell loss at the late stage of infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-1-209
1999-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/1/0800209a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-1-209&mimeType=html&fmt=ahah

References

  1. Baier M., Werner A., Bannert N., Metzner K., Kurth R. 1995; HIV suppression by interleukin-16. Nature 378:563
    [Google Scholar]
  2. Barker T. D., Weissman D., Daucher J. A., Roche K. M., Fauci A. S. 1996; Identification of multiple and distinct CD8+ T cell suppressor activities: dichotomy between infected and uninfected individuals, evolution with progression of disease, and sensitivity to gamma irradiation. Journal of Immunology 156:4476–4483
    [Google Scholar]
  3. Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J., Springer T. A. 1996; The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833
    [Google Scholar]
  4. Brinchmann J. E., Gaudernack G., Vartdal F. 1990; CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells. Evidence for a soluble inhibitor. Journal of Immunology 144:2961–2966
    [Google Scholar]
  5. Carmichael A., Jin X., Sissons P., Borysiewicz L. 1993; Quantitative analysis ofthe human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein–Barr virus in late disease. Journal of Experimental Medicine 177:249–256
    [Google Scholar]
  6. Castro B. A., Walker C. M., Eichberg J. W., Levy J. A. 1991; Suppression of human immunodeficiency virus replication by CD8+ cells from infected and uninfected chimpanzees. Cellular Immunology 132:246–255
    [Google Scholar]
  7. Chakrabarti S., Robert-Guroff M., Wong-Staal F., Gallo R. C., Moss B. 1986; Expression of the HTLV-III envelope gene by a recombinant vaccinia virus. Nature 320:535–537
    [Google Scholar]
  8. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. 1995; Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815
    [Google Scholar]
  9. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. 1993; Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362
    [Google Scholar]
  10. Harada S., Kobayashi N., Koyanagi Y., Yamamoto N. 1987; Clonal selection of human immunodeficiency virus (HIV): serological differences in the envelope antigens of the cloned viruses and HIV prototypes (HTLV-III B, LAV, and ARV). Virology 158:447–451
    [Google Scholar]
  11. Ho D. D., Moudgil T., Alam M. 1989; Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. New England Journal of Medicine 321:1621–1625
    [Google Scholar]
  12. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. 1995; Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126
    [Google Scholar]
  13. Hoffenbach A., Langlade-Demoyen P., Dadaglio G., Vilmer E., Michel F., Mayaud C., Autran B., Plata F. 1989; Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. Journal of Immunology 142:452–462
    [Google Scholar]
  14. Kannagi M., Chalifoux L. V., Lord C. I., Letvin N. L. 1988; Suppression of simian immunodeficiency virus replication in vitro by CD8+ lymphocytes. Journal of Immunology 140:2237–2242
    [Google Scholar]
  15. Kannagi M., Masuda T., Hattori T., Kanoh T., Nasu K., Yamamoto N., Harada S. 1990; Interference with human immunodeficiency virus (HIV) replication by CD8+ T cells in peripheral blood leukocytes of asymptomatic HIV carriers in vitro. Journal of Virology 64:3399–3406
    [Google Scholar]
  16. Kannagi M., Kuroda M. J., Maeda Y., Harada S. 1991; Coexistence of fusion receptors for human T-cell leukemia virus type-I (HTLV-I) and human immunodeficiency virus type-1 (HIV-1) on MOLT-4 cells. Microbiology and Immunology 35:729–740
    [Google Scholar]
  17. Kinter A. L., Ostrowski M., Goletti D., Oliva A., Weissman D., Gantt K., Hardy E., Jackson R., Ehler L., Fauci A.S. 1996; HIV replication in CD4+ T cells of HIV-infected individuals is regulated by a balance between the viral suppressive effects of endogenous beta-chemokines and the viral inductive effects of other endogenous cytokines. Proceedings of the National Academy of Sciences, USA 93:14076–14081
    [Google Scholar]
  18. Klein M. R., van Baalen C. A., Holwerda A. M., Kerkhof Garde S. R., Bende R. J., Keet I. P., Eeftinck-Schattenkerk J. K., Osterhaus A. D., Schuitemaker H., Miedema F. 1995; Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. Journal of Experimental Medicine 181:1365–1372
    [Google Scholar]
  19. Koenig S., Fuerst T. R., Wood L. V., Woods R. M., Suzich J. A., Jones G. M., de la Cruz V. F., Davey R. T. Jr, Venkatesan S., Moss B. and others 1990; Mapping the fine specificity of a cytolytic T cell response to HIV-1 nef protein. Journal of Immunology 145:127–135
    [Google Scholar]
  20. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. 1994; Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. Journal of Virology 68:4650–4655
    [Google Scholar]
  21. Kubo M., Ohashi T., Fujii M., Oka S., Iwamoto A., Harada S., Kannagi M. 1997; Abrogation of in vitro suppression of human immunodeficiency virus type 1 (HIV-1) replication mediated by CD8+ T lymphocytes of asymptomatic HIV-1 carriers by staphylococcal entero-toxin B and phorbol esters through induction of tumor necrosis factor alpha. Journal of Virology 71:7560–7566
    [Google Scholar]
  22. Lacey S. F., McDanal C. B., Horuk R., Greenberg M. L. 1997; The CXC chemokine stromal cell-derived factor 1 is not responsible for CD8+ T cell suppression of syncytia-inducing strains of HIV-1. Proceedingsof the National Academy of Sciences, USA 94:9842–9847
    [Google Scholar]
  23. Landay A. L., Mackewicz C. E., Levy J. A. 1993; An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status. Clinical Immunology and Immunopathology 69:106–116
    [Google Scholar]
  24. McKenzie S. W., Dallalio G., North M., Frame P., Means R. T. Jr 1996; Serum chemokine levels in patients with non-progressing HIV infection. AIDS 10:F29–F33
    [Google Scholar]
  25. Mackewicz C. E., Barker E., Levy J. A. 1996; Role of beta-chemokines in suppressing HIV replication. Science 274:1393–1395
    [Google Scholar]
  26. Oberlin E., Amara A., Bachelerie F., Bessia C., Virelizier J. L., Arenzana-Seisdedos F., Schwartz O., Heard J. M., Clark-Lewis I., Legler D. F., Loetscher M., Baggiolini M., Moser B. 1996; The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835
    [Google Scholar]
  27. O’Brien W. A., Koyanagi Y., Namazie A., Zhao J. Q., Diagne A., Idler K., Zack J. A., Chen I. S. 1990; phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature 348:69–73
    [Google Scholar]
  28. Pal R., Garzino-Demo A., Markham P. D., Burns J., Brown M., Gallo R. C., DeVico A. L. 1997; Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 278:695–698
    [Google Scholar]
  29. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. 1993; HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358
    [Google Scholar]
  30. Piatak M. Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. 1993; High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259:1749–1754
    [Google Scholar]
  31. Plata F., Autran B., Martins L. P., Wain-Hobson S., Raphael M., Mayaud C., Denis M., Guillon J. M., Debre P. 1987; AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature 328:348–351
    [Google Scholar]
  32. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop J. O., Brown A. J. 1990; Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. Journal of Virology 64:864–872
    [Google Scholar]
  33. Walker C. M., Levy J. A. 1989; A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology 66:628–630
    [Google Scholar]
  34. Walker C. M., Moody D. J., Stites D. P., Levy J. A. 1986; CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234:1563–1566
    [Google Scholar]
  35. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. 1987; HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328:345–348
    [Google Scholar]
  36. Walker B. D., Flexner C., Paradis T. J., Fuller T. C., Hirsch M. S., Schooley R. T., Moss B. 1988; HIV-1 reverse transcriptase is a target for cytotoxic T lymphocytes in infected individuals. Science 240:64–66
    [Google Scholar]
  37. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. and others 1995; Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122
    [Google Scholar]
  38. Yang O. O., Kalams S. A., Rosenzweig M., Trocha A., Jones N., Koziel M., Walker B. D., Johnson R. P. 1996; Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. Journal of Virology 70:5799–5806
    [Google Scholar]
  39. Yang O. O., Kalams S. A., Trocha A., Cao H., Luster A., Johnson R. P., Walker B. D. 1997; Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. Journal of Virology 71:3120–3128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-1-209
Loading
/content/journal/jgv/10.1099/0022-1317-80-1-209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error