1887

Abstract

Poliovirus type 2 Sabin mutants were selected for drug resistance and dependence by plating on HeLa cell monolayers in the presence of 3(2H)-isoflavene, a compound related to dichloroflavan, which prevents the shut-off of host translation and poliovirus RNA and protein synthesis. The drug-resistant mutants grew equally well in the presence and in the absence of the drug, while the drug-dependent mutants only grew in the presence of the compound. One dependent and one resistant mutant were characterized biologically in more detail. The resistant mutant did not exhibit thermolability. The mild thermolability exhibited by the dependent mutant was not affected by the addition of 3(2H)-isoflavene, indicating that the substance does not bind the poliovirus type 2 Sabin capsid. The translation of viral proteins and the shut-off of host protein translation during cell infection were not inhibited in either mutant. In the absence of the drug, the cleavage of the precursor VPO, a step in virus protein processing, was affected in the dependent mutant. The dependence of the mutant on the drug was due to the inability of 75S empty particles to reach maturation: our results strongly suggest that this phenomenon is strictly dependent on the reduction of RNA synthesis, confirming the existence of a dynamic equilibrium between RNA production and genome encapsidation during the poliovirus replication cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-1-157
1999-01-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/1/0800157a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-1-157&mimeType=html&fmt=ahah

References

  1. Arnold E., Luo M., Vriend G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J., Wimmer E. 1987; Implications of the picornavirus capsid structure for polyprotein processing. Proceedings of the National Academy of Sciences, USA 84:21–25
    [Google Scholar]
  2. Baron M. H., Baltimore D. 1982; In vitro copying of viral positive strand RNA by poliovirus replicase. Characterization of the reaction and its products. Journal of Biological Chemistry 27:12359–12366
    [Google Scholar]
  3. Bauer D. J., Selway J. W. T., Batchelor J. F., Tisdale M., Caldwell I. C., Young D. A. B. 1981; 4′, 6-Dichloroflavan (BW683C), a new anti-rhinovirus compound. Nature 292:369–370
    [Google Scholar]
  4. Bernstein H. D., Sarnow P., Baltimore D. 1986; Genetic complementation among poliovirus mutants derived from an infectious cDNA clone. Journal of Virology 60:1040–1049
    [Google Scholar]
  5. Bienz K., Egger D., Pasamontes L. 1987; Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160:220–226
    [Google Scholar]
  6. Burali C., Desideri N., Stein M. L., Conti C., Orsi N. 1987; Synthesis and anti-rhinovirus activity of halogen-substituted isoflavenes and isoflavanes. European Journal of Medicinal Chemistry 22:119–123
    [Google Scholar]
  7. Caliguiri L. A., Tamm I. 1970; The role of cytoplasmic membranes in poliovirus biosynthesis. Virology 42:100–111
    [Google Scholar]
  8. Carrasco L. 1994; Picornavirus inhibitors. PharmacologyTherapeutics 64:215–290
    [Google Scholar]
  9. Castrillo J. L., Vanden Berghe D., Carrasco L. 1986; 3-Methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology 152:219–227
    [Google Scholar]
  10. Conti C., Orsi N., Stein M. L. 1988; Effect of isoflavans and isoflavenes on rhinovirus 1B and its replication in HeLa cells. Antiviral Research 10:117–127
    [Google Scholar]
  11. Conti C., Genovese D., Santoro R., Stein M. L., Orsi N., Fiore L. 1990a; Activities and mechanisms of action of halogen-substituted flavonoids against poliovirus type 2 infection in vitro. Antimicrobial Agents and Chemotherapy 34:460–466
    [Google Scholar]
  12. Conti C., Desideri N., Orsi N., Sestili P., Stein M. L. 1990b; Synthesis and anti-rhinovirus activity of cyano- and amidino-substituted flavanoids. European Journal of Medicinal Chemistry 25:725–730
    [Google Scholar]
  13. Dasgupta A., Zabel P., Baltimore D. 1980; Dependence of the activity of poliovirus replicase on host cell protein. Cell 19:423–429
    [Google Scholar]
  14. Fox M.P., Otto M.J., McKinlay M. A. 1986; Prevention of rhinovirus and poliovirus uncoating by WIN51711, a new antiviral drug. Antimicrobial Agents and Chemotherapy 30:110–116
    [Google Scholar]
  15. Genovese D., Conti C., Tomao P., Desideri N., Stein M. L., Catone S., Fiore L. 1995; Effect of chloro-, cyano-, and amidino-substituted flavanoids on enterovirus infection in vitro. Antiviral Research 27:123–136
    [Google Scholar]
  16. Giachetti C., Hwang S. S., Semler B. L. 1992; cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. Journal of Virology 66:6045–6057
    [Google Scholar]
  17. Gonzáles M. E., Martlnez-Abarca F., Carrasco L. 1990; Flavonoids: potent inhibitors of poliovirus RNA synthesis. Antiviral Chemistry & Chemotherapy 1:203–209
    [Google Scholar]
  18. Guinea R., Carrasco L. 1990; Phospholipid biosynthesis and poliovirus genome replication: two coupled phenomena. EMBO Journal 9:2011–2016
    [Google Scholar]
  19. Haller A. A., Semler B. L. 1995; Stem-loop structure synergy in binding cellular proteins to the 5′ noncoding region of poliovirus RNA. Virology 206:923–934
    [Google Scholar]
  20. Heinz B. A., Vance L. M. 1995; The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. Journal of Virology 69:4189–4197
    [Google Scholar]
  21. Heinz B. A., Rueckert R. R., Shepard D. A., Dutko F. J., McKinlay M. A., Fancher M., Rossmann M. G., Badger J., Smith T. J. 1989; Genetic and molecular analyses of spontaneous mutants of human rhinovirus that are resistant to an antiviral compound. Journal of Virology 63:2476–2485
    [Google Scholar]
  22. Heinz B. A., Shepard D. A., Rueckert R. R. 1990; Escape mutant analysis of a drug-binding site can be used to map functions in the rhinovirus capsid. In Use ofX Ray Crystallography in the Design ofAntiviral Agents pp 173–186 Edited by Laver G., Air G. New York: Academic Press;
    [Google Scholar]
  23. Hellen C. U. T., Wimmer E. 1995; Enterovirus structure and assembly. In Human Enterovirus Infections pp 155–174 Edited by Rotbart H. A. Washington, DC: ASM Press;
    [Google Scholar]
  24. Holland J., Spindler K., Horodyski E., Grabau E., Nichol S., VandePol S. 1982; Rapid evolution of RNA genomes. Science 215:1577–1585
    [Google Scholar]
  25. Johnson K. L., Sarnow P. 1995; Viral RNA synthesis. In Human Enterovirus Infections pp 95–112 Edited by Rotbart H. A. Washington, DC: ASM Press;
    [Google Scholar]
  26. Moscufo N., Simons J., Chow M. 1991; Myristoylation is important at multiple stages in poliovirus assembly. Journal of Virology 65:2372–2380
    [Google Scholar]
  27. Mosser A. G., Rueckert R. R. 1993; WIN51711-dependent mutants of poliovirus type 3: evidence that virions decay after release from cells unless drug is present. Journal of Virology 67:1246–1254
    [Google Scholar]
  28. Pincus S. E., Wimmer E. 1986; Production of guanidine-resistant and -dependent poliovirus mutants from cloned cDNA: mutations in polypeptides 2C are responsible for altered guanidine sensitivity. Journal of Virology 60:793–796
    [Google Scholar]
  29. Pincus S. E., Diamond D. C., Emini E. A., Wimmer E. 1986; Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. Journal of Virology 57:638–646
    [Google Scholar]
  30. Roehl H. H., Parsley T. B., Ho T. V., Semler B. L. 1997; Processing of a cellular polypeptide by 3CD proteinase is required for poliovirus ribonucleoprotein complex formation. Journal of Virology 71:578–585
    [Google Scholar]
  31. Rueckert R. R. 1996; Picornaviridae: the viruses and their replication. In Fields Virology 3rd edn pp 609–654 Edited by Fields N. B., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  32. Shepard D. A., Heinz B. A., Rueckert R. R. 1993; WIN52035-2 inhibits both attachment and eclipse of human rhinovirus 14. Journal of Virology 67:2245–2254
    [Google Scholar]
  33. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. Journal of Virology 57:246–257
    [Google Scholar]
  34. Superti F., Seganti L., Orsi N., Divizia M., Gabrieli R., Pana– A., Stein M. L. 1989; Effect of isoflavans and isoflavenes on the infection of Frp/3 cells by hepatitis A virus. Antiviral Research 11:247–254
    [Google Scholar]
  35. Takeda N., Kuhn J., Yang C. F., Takegami T., Wimmer E. 1986; Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. Journal of Virology 60:43–53
    [Google Scholar]
  36. Takedagami T., Kuhn J., Anderson C. W., Wimmer E. 1983; Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus. Proceedings of the National Academy of Sciences, USA 80:7447–7451
    [Google Scholar]
  37. Zeichardt H., Otto M. J., McKinley M. A., Willingmann P., Habermehl K. O. 1987; Inhibition of poliovirus uncoating by disoxaril (WIN51711). Virology 160:281–285
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-80-1-157
Loading
/content/journal/jgv/10.1099/0022-1317-80-1-157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error