1887

Abstract

The arginine-glycine-aspartic acid motif at the C terminus of coxsackievirus A9 capsid protein VP1 has been shown to play a role in specific attachment of the virus to integrin on the host cell surface. The C-terminal region of the VP1 protein has also been shown to be highly antigenic by using peptide scanning techniques. To find out whether this region contains a neutralizing epitope, three overlapping peptides covering the C-terminal end of VP1 were synthesized and rabbit antisera were raised against these peptides. Neutralization of the virus was observed with all three antipeptide antisera in A549 cells and with two antisera in RD cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-9-2249
1998-09-01
2024-11-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/9/9747735.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-9-2249&mimeType=html&fmt=ahah

References

  1. Abraham G., Colonno R. J. 1984; Many rhinovirus serotypes share the same cellular receptor. Journal of Virology 51:340–345
    [Google Scholar]
  2. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. Journal of Virology 69:2664–2666
    [Google Scholar]
  3. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  4. Chang K. H., Day C., Walker J., Hyypiä T., Stanway G. 1992; The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. Journal of General Virology 73:621–626
    [Google Scholar]
  5. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. 1989; The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70:625–637
    [Google Scholar]
  6. Grist N. R., Bell E. J., Assaad F. 1978; Enteroviruses in human disease. Progress in Medical Virology 24:114–157
    [Google Scholar]
  7. Hewat E. A., Blaas D. 1996; Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO Journal 15:1515–1523
    [Google Scholar]
  8. Hovi T., Roivainen M. 1993; Peptide antisera targeted to a conserved sequence in poliovirus capsid protein VP1 cross-react widely with members of the genus enterovirus. Journal of Clinical Microbiology 31:1083–1087
    [Google Scholar]
  9. Hughes P. J., Horsnell C., Hyypiä T., Stanway G. 1995; The coxsackievirus A9 RGD motif is not essential for virus viability. Journal of Virology 69:8035–8040
    [Google Scholar]
  10. Huttunen P., Santti J., Pulli T., Hyypiä T. 1996; The major echovirus group is genetically coherent and related to coxsackie B viruses. Journal of General Virology 77:715–725
    [Google Scholar]
  11. Hynes R. O. 1992; Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25
    [Google Scholar]
  12. Hyypiä T., Kallajoki M., Maaronen M., Stanway G., Kandolf R., Auvinen P., Kalimo H. 1993; Pathogenic differences between coxsackie A and B virus infections in newborn mice. Virus Research 27:71–78
    [Google Scholar]
  13. Leinonen M. 1985; Serological methods for the study of bacterial surface antigens. In Enterobacterial Surface Antigens: Methods for Molecular Characterization pp 179–206 Korhonen T. K., Dawes E. A., Makela P. H. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  14. Martínez M. A., Verdaguer N., Mateu M. G., Domingo E. 1997; Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proceedings of the National Academy of Sciences, USA 94:6798–6802
    [Google Scholar]
  15. Mateu M. G., Martínez M. A., Capucci L., Andreu D., Giralt E., Sobrino F., Brocchi E., Domingo E. 1990; A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. Journal of General Virology 71:629–637
    [Google Scholar]
  16. Pulli T., Koskimies P., Hyypiä T. 1995; Molecular comparison of coxsackie A virus serotypes. Virology 212:30–38
    [Google Scholar]
  17. Pulli T., Koivunen E., Hyypiä T. 1997; Cell-surface interactions of echovirus 22. Journal of Biological Chemistry 272:21176–21180
    [Google Scholar]
  18. Pulli T., Lankinen H., Roivainen M., Hyypiä T. 1998; Antigenic sites of coxsackievirus A9. Virology 240:202–212
    [Google Scholar]
  19. Roivainen M., Hyypiä T., Piirainen L., Kalkkinen N., Stanway G., Hovi T. 1991; RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. Journal of Virology 65:4735–4740
    [Google Scholar]
  20. Roivainen M., Piirainen L., Rysa T., Närvänen A., Hovi T. 1993; An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195:762–765
    [Google Scholar]
  21. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypiä T. 1994; Entry of coxsackievirus A9 into host cells : specific interactions with αvβ3 integrin, the vitronectin receptor. Virology 203:357–365
    [Google Scholar]
  22. Roivainen M., Piirainen L., Hovi T. 1996; Efficient RGD- independent entry process of coxsackievirus A9. Archives of Virology 141:1909–1919
    [Google Scholar]
  23. Ruoslahti E., Pierschbacher M. D. 1987; New perspectives in cell adhesion: RGD and integrins. Science 238:491–493
    [Google Scholar]
  24. Smith T. J., Olson N. H., Cheng R. H., Chase E. S., Baker T. S. 1993; Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility. Proceedings of the National Academy of Sciences, USA 90:7015–7018
    [Google Scholar]
  25. Smyth M., Hall J., Fry E., Stuart D., Stanway G., Hyypiä T. 1993; Preliminary crystallographic analysis of coxsackievirus A9. Journal of Molecular Biology 230:667–669
    [Google Scholar]
  26. Stanway G., Kalkkinen N., Roivainen M., Ghazi F., Khan M., Smyth M., Meurman O., Hyypiä T. 1994; Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. Journal of Virology 68:8232–8238
    [Google Scholar]
  27. Thomas A. A. M., Brioen P., Boyé A. 1985; A monoclonal antibody that neutralizes poliovirus by cross-linking virions. Journal of Virology 54:7–13
    [Google Scholar]
  28. Verdaguer N., Mateu M. G., Andreu D., Giralt E., Domingo E., Fita I. 1995; Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement ofthe arg-gly-asp motifin the interaction. EMBO Journal 14:1690–1696
    [Google Scholar]
  29. Verdaguer N., Sevilla N., Valero M. L., Stuart D., Brocchi E., Andreu D., Giralt E., Domingo E., Mateu M. G., Fita I. 1998; A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus : implications for intratypic antigenic variation. Journal of Virology 72:739–748
    [Google Scholar]
  30. Zimmermann H., Eggers H. J., Nelsen-Salz B. 1997; Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. Virology 233:149–156
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-79-9-2249
Loading
/content/journal/jgv/10.1099/0022-1317-79-9-2249
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error