1887

Abstract

HLA-B57 has been shown to be strongly associated with slow disease progression in human immunodeficiency virus type 1 (HIV-1)-infected patients from the Amsterdam Cohort. Since HIV-1-specific CTL can control and eliminate virus-infected cells, we sought to characterize the dominant HLA-B57-restricted CTL responses at the epitope level. It was found that HLA-B57-restricted CTL responses were targeted at multiple proteins of HIV-1, with CTL specific for Gag and RT being the most pronounced. Gag-specific CTL recognized peptides ISPRTLNAW (aa 147–155) and STLQEQIGW (aa 241–249), which had previously been reported as HLA-B57-restricted. The RT-specific CTL response in one longterm survivor studied in great detail persisted for > 10 years and was dominated by HLA-B57-restricted CTL that recognized the newly defined epitope IVLPEKDSW (RT, aa 244–252). This epitope could be recognized in the context of both HLA-B*5701 and HLA-B*5801. Interestingly, three epitope variants of IVLPEKDSW were observed, which coincided with the strongest detectable CTL response to RT. One variant (T2E7) was not recognized by IVLPEKDSW-specific CTL despite the fact that this variant bound to HLA-B*5701 with asimilar affinity as the index peptide. Finally, only viruses which contained the epitope index sequence were obtained suggesting efficient virus control by CTL. In conclusion, we report the characterization of dominant HIV-1 Gag- and RT-derived, HLA-B57-restricted CTL epitopes which are associated with longer time to AIDS. Further characterization of CTL responses restricted by HLA-B57 and other protective HLA alleles may contribute to the development of effective AIDS vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-9-2191
1998-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/9/9747728.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-9-2191&mimeType=html&fmt=ahah

References

  1. Barber L. D., Percival L., Arnett K. L., Gumperz J. E., Chen L., Parham P. 1997; Polymorphisms in the a1 helix of the HLA-B heavy chain can have an overriding influence on peptide-binding specificity. Journal of Immunology 158:1660
    [Google Scholar]
  2. Bertoletti A., Cham F., McAdam S., Rostron T., Rowland-Jones S., Sabally S., Corrah T., Ariyoshi K., Whittle H. 1998; Cytotoxic T cells from human immunodeficiency virus type 2-infected patients frequently cross-react with different human immunodeficiency virus type 1 clades. Journal of Virology 72:2439–2448
    [Google Scholar]
  3. Borrow P., Lewicki H., Hahn B. H., Shaw G. M., Oldstone M. B. A. 1994; Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. Journal of Virology 68:6103–6110
    [Google Scholar]
  4. Borrow P., Lewicki H., Wei X., Horwitz M. S., Peffer N., Meyers H., Nelson J. A., Gairin J. E., Hahn B. H., Oldstone M. B. A., Shaw G. M. 1997; Antiviral pressure exerted by HIV-1 specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Medicine 3:205–211
    [Google Scholar]
  5. Buseyne F., Fevrier M., Garcia S., Gougeon M. L., Riviére Y. 1996; Dual function of a human immunodeficiency virus(HIV)-specific cytotoxic T lymphocyte clone: inhibition of HIV replication by nonlytic mechanisms and lysis of HIV-infected CD4+ cells. Virology 225:248–253
    [Google Scholar]
  6. Centers for Disease Control and Prevention 1993; 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. Mortality and Morbidity Weekly Report 411–19
    [Google Scholar]
  7. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. 1995; Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815
    [Google Scholar]
  8. DeRodaHusman A. M., Koot M., Cornelissen M., Keet I. P. M., Brouwer M., Broersen S. M., Bakker M., Roos M. T. L., Prins M., DeWolf F., Coutinho R. A., Miedema F., Goudsmit J., Schuitemaker H. 1997; Association between CCR5 genotype and the clinical course of HIV-1 infection. Annals of Internal Medicine 127:882–890
    [Google Scholar]
  9. Falk K., Rötzschke O., Takiguchi M., Gnau V., Stevanovic S., Jung G., Rammensee H. G. 1995; Peptide motifs of HLA-B58, B60, and B62 molecules. Immunogenetics 41:165–168
    [Google Scholar]
  10. Goulder P. J. R., Bunce M., Krausa P., McIntyre K., Crowley S., Morgan B., Edwards A., Giangrande P., Phillips R. E., McMichael A. J. 1996; Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type-1 infection. AIDS Research and Human Retroviruses 12:1691–1698
    [Google Scholar]
  11. Goulder P. J. R., Phillips R. E., Colbert R. A., McAdam S., Ogg G., Nowak M. A., Giangrande P., Luzzi G., Morgan B., Edwards A., McMichael A. J., Rowland-Jones S. 1997; Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Medicine 3:212–217
    [Google Scholar]
  12. Guy B., Kieny M. P., Riviére Y., LePeuch C., Dott K., Girard M., Montagnier L., Lecocq J. P. 1987; HIV F/3´ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330:266–269
    [Google Scholar]
  13. Haas G., Plikat U., Debré P., Lucchiari M., Katlama C., Dudoit Y., Bonduelle O., Bauer M., Ihlenfeldt H. G., Jung G., Maier B., Meyerhans A., Autran B. 1996; Dynamics of viral variants in HIV- 1 Nef and specific cytotoxic T lymphocytes in vivo. Journal of Immunology 157:4212–4221
    [Google Scholar]
  14. Haldane J. B. S. 1955; The estimation and significance of the logarithm of a ratio of frequencies. Annals of Human Genetics 20:309–311
    [Google Scholar]
  15. Harrer T., Harrer E., Kalams S. A., Elbeik T., Staprans S. I., Feinberg M. B., Cao Y., Ho D. D., Yilma T., Caliendo A. M., Johnson R. P., Buchbinder S. P., Walker B. D. 1996; Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable non-progressing HIV type-1 infection. AIDS Research and Human Retroviruses 12:585–592
    [Google Scholar]
  16. Haynes B. F., Pantaleo G., Fauci A. S. 1996; Toward an understanding of the correlates of protective immunity to HIV infection. Science 271:324–328
    [Google Scholar]
  17. Imanishi T., Akaza T., Kimura A., Tokunaga K., Gojobori T. 1992; Allele and haplotype frequencies for HLA and complement loci in various ethnic groups. In HLA 1991, Proceedings of the Eleventh International Histocompatibility Workshop and Conference held in Yokohama pp 1065–1220 Tsuji K., Aizawa M., Sasazuki T. Edited by Oxford: Oxford University Press;
    [Google Scholar]
  18. Itescu S., Mathur W. U., Skovron M. L., Brancato L. J., Marmor M., Zeleniuch J. A., Winchester R. 1992; HLA-B35 is associated with accelerated progression to AIDS. Journal of Acquired Immune Deficiency Syndromes 5:37–45
    [Google Scholar]
  19. Johnson R. P., Trocha A., Yang L., Mazzara G. P., Panicali D. L., Buchanan T. M., Walker B. D. 1991; HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes: fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononuclear cells and cloned effector cells. Journal of Immunology 147:1512–1521
    [Google Scholar]
  20. Kalams S. A., Johnson R. P., Trocha A. K., Dynan M. J., Ngo H. S., D’Aquila R. T., Kurnick J. T., Walker B. D. 1994; Longitudinal analysis ofT cell receptor (TCR)gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire. Journal of Experimental Medicine 179:1261–1271
    [Google Scholar]
  21. Kaslow R. A., Duquesnoy R., VanRaden M., Kingsley L., Marrari M., Friedman H., Su S., Saah A. J., Detels R., Phair J. P., Rinaldo C. 1990; A1, Cw7, B8, DR3 HLA antigen combination associated with rapid decline of T-helper lymphocytes in HIV-1 infection. Lancet 335:927–930
    [Google Scholar]
  22. Kaslow R. A., Carrington M., Apple R., Park L., Munoz A., Saah A. J., Goedert J. J., Winkler C., O’Brien S. J., Rinaldo C., Detels R., Blattner W., Phair J. P., Erlich H., Mann D. L. 1996; Influence of combinations of human major histocompatibility complex genes in the course of HIV-1 infection. Nature Medicine 2:405–411
    [Google Scholar]
  23. Keet I. P. M., Klein M. R., Just J., Kaslow R. A. 1996; The role of host genetics in the natural history of HIV-1 infection: the needles in the haystack. AIDS 10 Suppl A S59–S67
    [Google Scholar]
  24. Klein M. R., Miedema F. 1995; Long-term survivors of HIV-1 infection. Trends in Microbiology 3:386–391
    [Google Scholar]
  25. Klein M. R., Keet I. P. M., D’Amaro J., Bende R. J., Hekman A., Mesman B., Koot M., deWaal L. P., Coutinho R. A., Miedema F. 1994; Associations between HLA frequencies and pathogenic features of human immunodeficiency virus type 1 infection in seroconverters from the Amsterdam Cohort of homosexual men. Journal of Infectious Diseases 169:1244–1249
    [Google Scholar]
  26. Klein M. R., VanBaalen C. A., Holwerda A. M., Kerkhof-Garde S. R., Bende R. J., Keet I. P. M., EeftinckSchattenkerk J. K. M., Osterhaus A. D. M. E., Schuitemaker H., Miedema F. 1995; Kinetics of Gag- specific CTL responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. Journal of Experimental Medicine 181:1365–1372
    [Google Scholar]
  27. Klein M. R., Van der Burg S. H., Pontesilli O., Miedema F. 1998; Cytotoxic T lymphocytes in HIV-1 infection, a killing paradox?. Immunology Today in press
    [Google Scholar]
  28. Koenig S., Conley A. J., Brewah Y. A., Jones G. M., Leath S., Boots L. J., Davey V., Pantaleo G., Demarest J. F., Carter C., Wannebo C., Yannelli J. R., Rosenberg S. A., CliffordLane H. 1995; Transfer of HIV-1 specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nature Medicine 1:330–336
    [Google Scholar]
  29. Koot M., Keet I. P. M., Vos A. H. V., DeGoede R. E. Y., Roos M. T. L., Coutinho R. A., Miedema F., Schellekens P. T. A., Tersmette M. 1993; Prognostic value of human immunodeficiency virus type 1 biological phenotype for rate of CD4+ cell depletion and progression to AIDS. Annals of Internal Medicine 118:681–688
    [Google Scholar]
  30. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. 1994; Temporal associations of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. Journal of Virology 68:4650–4655
    [Google Scholar]
  31. Lefkovits I., Waldmann H. 1984; Limiting dilution analysis of the cells of immune system. I. The clonal basis of the immune response. Immunology Today 5:265–268
    [Google Scholar]
  32. McChesney M., Tanneau F., Regnault A., Sansonetti P., Montagnier L., Kieny M. P., Riviere Y. 1990; Detection of primary cytotoxic T lymphocytes specific for the envelope glycoprotein of HIV-1 by deletion ofthe env amino-terminal signal sequence. European JournalofImmunology 20:215–220
    [Google Scholar]
  33. Mortara L., Letourneur F., Gras-Masse H., Venet A., Guillet J. G., Bourgault-Villada I. 1998; Selection of virus variants and emergence of virus escape mutants after immunization with an epitope vaccine. Journal of Virology 72:1403–1410
    [Google Scholar]
  34. Myers G., Hahn B. H., Henderson L. E., Korber B. T. M., Jeang K. T., McCutchan F. E., Pavlakis G. N. 1995 Human Retroviruses and AIDS 1995 : A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences Los Alamos, NM: : Los Alamos National Laboratory;
    [Google Scholar]
  35. Plata F., Autran B., Martins L. P., Wain-Hobson S., Raphael M., Mayaud C., Denis M., Guillon J. M., Debre P. 1987; AIDS virus- specific cytotoxic T lymphocytes in lung disorders. Nature 328:348–351
    [Google Scholar]
  36. Price D. A., Goulder P. J., Klenerman P., Sewell A. K., Easterbrook P. J., Troop M., Bangham C. R., Phillips R. E. 1997; Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proceedings of the National Academy of Sciences, USA 94:1890–1895
    [Google Scholar]
  37. Rautmann G., Kieny M. P., Brandely R., Dott K., Girard M., Montagnier L., Lecocq J. P. 1989; HIV-1 core proteins expressed from recombinant vaccinia viruses. AIDS Research and Human Retroviruses 5:147–157
    [Google Scholar]
  38. Sahmoud T., Laurian Y., Gazengel C., Sultan Y., Gautreau C., Costagliola D. 1993; Progression to AIDS in French haemophiliacs: association with HLA-B35. AIDS 7:497–500
    [Google Scholar]
  39. Schuitemaker H., Kootstra N. A., DeGoede R. E. Y., DeWolf F., Miedema F., Tersmette M. 1991; Monocytotropic human immunodeficiency virus 1 (HIV-1) variants detectable in all stages of HIV infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture. Journal of Virology 65:356–363
    [Google Scholar]
  40. Sipsas N. V., Kalams S. A., Trocha A., He S., Blattner W. A., Walker B. D., Johnson R. P. 1997; Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1. Journal of Clinical Investigation 99:752–762
    [Google Scholar]
  41. Strijbosch L. W. G., Buurman W. A., Does R. J. M. M., Zinken P. H., Groenewegen G. 1987; Limiting dilution assays. Experimental design and statistical analysis. Journal of Immunological Methods 97:133–140
    [Google Scholar]
  42. Tsubota H., Lord C. I., Watkins D. I., Morimoto C., Letvin N. L. 1989; A cytotoxic T lymphocyte inhibits acquired immunodeficiency syndrome virus replication in peripheral blood lymphocytes. Journal of Experimental Medicine 169:1421–1434
    [Google Scholar]
  43. VanBaalen C. A., Klein M. R., Geretti A. M., Keet I. P. M., Miedema F., VanEls C. A. C. M., Osterhaus A. D. M. E. 1993; Selective in vitro expansion of HLA class I-restricted HIV-1 gag specific CD8+ T cells from seropositive individuals : identification of CTL epitopes and precursor frequencies. AIDS 7:781–786
    [Google Scholar]
  44. VanBaalen C. A., Pontesilli O., Huisman R. C., Geretti A. M., Klein M. R, DeWolf F., Miedema F., Gruters R. A., Osterhaus A. D. 1997; Human immunodeficiency virus type 1 Rev- and Tat-specific cytotoxic T lymphocyte frequencies inversely correlate with rapid progression to AIDS. Journal ofGeneral Virology 78:1913–1918
    [Google Scholar]
  45. VandeGriend R. J., VanKrimpen B. A., Bol S. J. L., Thompson A., Bolhuis R. L. H. 1984; Rapid expansion of human cytotoxic T cell clones : growth promotion by a heat-labile serum component and by various types of feeder cells. Journal of Immunological Methods 66:285–298
    [Google Scholar]
  46. Van der Burg S. H., Klein M. R., Bol S. J. L., Thompson A., Bolhuis R. L. H. 1984; Rapid expansion of human cytotoxic T cell clones : growth promotion by a heat-labile serum component and by various types of feeder cells. Journal of Immunological Methods 66:285–298
    [Google Scholar]
  47. VanderBurg S. H., Ras E., Drijfhout J. W., Benckhuijsen W. E., Bremers A. J. A., Melief C. J. M., Kast W. M. 1995b; An HLA class I peptide-binding assay based on competition for binding to class I molecules on intact human B cells: identification of conserved HIV-1 polymerase peptides binding to HLA-A*0301. Human Immunology 44:189–198
    [Google Scholar]
  48. VanderBurg S. H., Klein M. R., Pontesilli O., Holwerda A. M., Drijfhout J. W., Kast W. M., Miedema F., Melief C. J. M. 1997; HIV-1 reverse transcriptase-specific cytotoxic T lymphocytes targeted at epitopes under structural or functional constraints do not protect against progression to AIDS. Journal of Immunology 159:3648–3654
    [Google Scholar]
  49. Walker C. M., Moody D. J., Stites D. P., Levy J. A. 1986; CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234:1563–1566
    [Google Scholar]
  50. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. 1987; HIV-1 specific cytotoxic T lymphocytes in seropositive individuals. Nature 328:345–348
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-9-2191
Loading
/content/journal/jgv/10.1099/0022-1317-79-9-2191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error