1887

Abstract

An important characteristic of the E6 proteins derived from oncogenic associated human papillomaviruses (HPVs) is their ability to target the cellular tumour suppressor protein, p53, for ubiquitin mediated degradation. Several studies have attempted to address the important characteristics of both E6 and p53 for this activity , but the equivalent determinants have not been extensively assessed Indeed, recent studies indicate differences between the and the degradation assays. We have performed an extensive analysis of the ability of a range of HPV-18 E6 mutants to direct p53 degradation In addition, we have also compared the ability of HPV-18 E6 to direct the degradation of different oligomeric forms of p53 both in human and in murine cells. The results of these studies show that mutants of E6 exhibit very similar phenotypes both and In contrast, mutants of p53 show markedly different susceptibilities and to E6-induced degradation, and this is further affected by the nature of the cell type in which the assays are performed. Finally, using a cell line temperature sensitive for the E1 ubiquitin-activating enzyme we have been able to show directly that this enzyme is involved in the process of E6-mediated degradation of p53 .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-8-1963
1998-08-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/8/9714244.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-8-1963&mimeType=html&fmt=ahah

References

  1. Band V., Dalal S., Delmolino L., Androphy E. J. 1993; Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells. EMBO Journal 12:1847–1852
    [Google Scholar]
  2. Banks L., Matlashewski G., Crawford L. 1986; Isolation of human p53 specific monoclonal antibodies and their use in the studies of human p53 expression. European Journal of Biochemistry 159:529–534
    [Google Scholar]
  3. Barbosa M. S. S., Lowy D. R., Schiller J. T. 1989; Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. Journal of Virology 63:1404–1407
    [Google Scholar]
  4. Chowdary D. R., Dermody J. J., Jha K. K., Ozer H. L. 1994; Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Molecular and Cellular Biology 14:1997–2003
    [Google Scholar]
  5. Crook T., Tidy J. A., Vousden K. H. 1991; Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67:547–556
    [Google Scholar]
  6. Crook T., Ludwig R., Marston N., Willkomm D., Vousden K. 1996; Sensitivity of p53 lysine mutants to ubiquitin-directed degradation targeted by human papillomavirus E6. Virology 217:285–292
    [Google Scholar]
  7. Dalal S., Gao Q., Androphy E. J., Band V. 1996; Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. Journal of Virology 70:683–688
    [Google Scholar]
  8. Diller L., Kassel J., Nelson C. E., Gryka M. A., Litwak G., Gebhardt M., Bressac B., Ozturk M., Baker S. J., Vogelstein B., Friend S. H. 1990; p53 functions as a cell cycle control protein in osteosarcomas. Molecular and Cellular Biology 10:5772–5781
    [Google Scholar]
  9. El-Deiry W. S., Tokino T., Velculescu V. E., Lewy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Winzler K. W., Vogelstein B. 1993; WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825
    [Google Scholar]
  10. Foster S. A., Demers W., Etscheid B., Galloway D. A. 1994; The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. Journal of Virology 68:5698–5705
    [Google Scholar]
  11. Funk W. D., Pak D. T., Karas R. H., Wright W. E., Shay J. W. 1992; A transcriptionally active DNA-binding site for human p53 protein complexes. Molecular and Cellular Biology 12:2866–2871
    [Google Scholar]
  12. Hollstein M., Rice K., Greenblatt M. S., Soussi T., Fuchs R., Sorlie T., Hovig E., Smith-Sorensen B., Montesano R., Harris C. C. 1994; Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Research 22:3551–3555
    [Google Scholar]
  13. Huibregtse J. M., Scheffner M., Howley P. M. 1991; A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO Journal 10:4129–4135
    [Google Scholar]
  14. Huibregtse J. M., Scheffner M., Howley P. M. 1993; Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Molecular and Cellular Biology 13:4918–4927
    [Google Scholar]
  15. Isaacs J., Chen P., Garza A., Hansen M., Barrett J., Weissman B. 1997; Failure of HPV E6 to rapidly degrade p53 in human HeLa X PNET cell hybrids. Oncogene 14:1669–1678
    [Google Scholar]
  16. Kastan M. B., Zhan Q., El-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunket B. S., Vogelstein B., Fornace A. J. 1992; A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597
    [Google Scholar]
  17. Kern S. E., Kinzler K. W., Bruskin A., Jarosz D., Friedman P., Prives C., Vogelstein B. 1991; Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711
    [Google Scholar]
  18. Kessis T. D., Slebos R. J., Nelson W. G., Kastan M. B., Plunkett B. S., Han S. M., Lorincz A. T., Hedrick L., Cho K. R. 1993; Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proceedings of the National Academy of Sciences, USA 90:3988–3992
    [Google Scholar]
  19. Lane D. P. 1992; p53, guardian of the genome. Nature 358:15–16
    [Google Scholar]
  20. Lechner M. S., Mack D. H., Finicle A. B., Crook T., Vousden K. H., Laimins L. A. 1992; Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO Journal 11:3045–3052
    [Google Scholar]
  21. Li X., Coffino P. 1996; High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. Journal of Virology 70:4509–4516
    [Google Scholar]
  22. Lin D., Shields M. Y., Ullrich S. J., Apella E., Mercer W. E. 1992; Growth arrest induced by wild -type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proceedings of the National Academy of Sciences, USA 89:9210–9214
    [Google Scholar]
  23. Marston N. J., Jenkins J. R., Vousden K. H. 1995; Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10:1709–1715
    [Google Scholar]
  24. Matlashewski G., Banks L., Wu-Liao J., Spence P., Pim D., Crawford L. 1986; The expression of human papillomavirus type 18 E6 protein in bacteria and the production of anti-E6 antibodies. Journal of General Virology 67:1909–1916
    [Google Scholar]
  25. Matlashewski G., Schneider J., Banks L., Jones N., Murray A., Crawford L. 1987; Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO Journal 6:1741–1746
    [Google Scholar]
  26. Meek D. W. 1994; Post-translational modification of p53. Seminars in Cancer Biology 5:203–210
    [Google Scholar]
  27. Mietz J. A., Unger T., Huibregtse J. M., Howley P. M. 1992; The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO Journal 11:5013–5020
    [Google Scholar]
  28. Milne D. M., McKendrick L., Jardine L. J., Deacon E., Lord J. M., Meek J. M. 1996; Murine p53 is phosphorylated within the pAb421 epitope by protein kinase C in vitro but not in vivo, even after stimulation with the phorbol ester O-tetradecanoylphorbol 13-acetate. Oncogene 13:205–211
    [Google Scholar]
  29. Okamoto K., Beach D. 1994; Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO Journal 13:4816–4822
    [Google Scholar]
  30. Pim D., Storey A., Thomas M., Massimi P., Banks L. 1994; Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9:1869–1876
    [Google Scholar]
  31. Rolfe M., Beer-Romero P., Glass S., Eckstein J., Berdo I., Theodoras A., Pagano M., Draetta G. 1995; Reconstitution of p53-ubiquitinylation reactions from purified components: the role of human ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6AP). Proceedings of the National Academy of Sciences, USA 92:3264–3268
    [Google Scholar]
  32. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promote the degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  33. Tarunina M., Jenkins J. R. 1993; Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity. Oncogene 8:3165–3173
    [Google Scholar]
  34. Thomas M., Massimi P., Jenkins J., Banks L. 1995; HPV-18 E6 mediated inhibition of p53 DNA binding activity is independent of E6 induced degradation. Oncogene 10:261–268
    [Google Scholar]
  35. Waga S., Hannon G. J., Beach D., Stillman B. 1994; The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-79-8-1963
Loading
/content/journal/jgv/10.1099/0022-1317-79-8-1963
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error