1887

Abstract

Based on available sequence data, a phylogeny of small ruminant lentiviruses (SRLV) was established for and LTR fragments using maximum likelihood, neighbour-joining and minimum evolution reconstruction techniques. To reconstruct topologies as accurately as possible, phylogenetic parameters like base composition, percentage divergences, kappa, the gamma shape parameter alpha and codon position-specific rates were estimated prior to the reconstruction of trees. Divergences between fragments of SRLV ranged from 16% in and to 22% in and 35% in LTR. The codon position bias found and the ratios of synonymous to nonsynonymous substitutions were inversely related to overall divergence, indicating the existence of both negative and positive Dar winian selection in SRLV genes. The phylogenetic trees reconstructed with relative substitution rates assigned to the codon positions revealed an interesting relationship between lentiviruses from sheep and goats. Overall, at least six different clades could be differentiated, with no clear separation of SRLV strains derived from goats (caprine arthritis- encephalitis virus) or sheep (maedi-visna virus). Trees generated with fragments from different coding regions were in good agreement with each other as well as with trees generated with different phylogeny reconstruction methods. In this work, clear indications of the existence and epidemiological importance of cross-species transmission were found.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-8-1951
1998-08-01
2022-05-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/8/9714243.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-8-1951&mimeType=html&fmt=ahah

References

  1. Bachmann M. H., Mathiason-Dubard C., Learn G. H., Rodrigo A. G., Sodora D. L., Mazzetti P., Hoover E. A., Mullins J. I. 1997; Genetic diversity of feline immunodeficiency virus : dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. Journal of Virology 71:4241–4253
    [Google Scholar]
  2. Banks K. L., Adams D. S., McGuire T. C., Carlson J. 1983; Experimental infection of sheep by caprine arthritis-encephalitis virus and goats by progressive pneumonia virus. American Journal of Veterinary Research 44:2307–2311
    [Google Scholar]
  3. Campbell B. J., Avery R. J. 1996; Sequence analysis and transcriptional activity of the LTR of OLV-CU1, a North American ovine lentivirus. Journal of General Virology 77:2999–3004
    [Google Scholar]
  4. CDC 1995; Human rabies possibly of bat origin - Washington, USA, 1995. Rabies Bulletin Europe 1910–11
    [Google Scholar]
  5. Chadwick B. J., Coelen R. J., Wilcox G. E., Sammels L. M., Kertayadnya G. 1995; Nucleotide sequence analysis of Jembrana disease virus: a bovine lentivirus associated with an acute disease syndrome. Journal of General Virology 76:1637–1650
    [Google Scholar]
  6. Chang J. T. 1996; Inconsistency of evolutionary tree topology reconstruction methods when substitution rates vary across characters. Mathematical Biosciences 134:189–215
    [Google Scholar]
  7. Chebloune Y., Karr B., Sheffer D., Leung K., Narayan O. 1996; Variations in lentiviral gene expression in monocyte-derived macrophages from naturally infected sheep. Journal of General Virology 77:2037–2051
    [Google Scholar]
  8. Chiu I.-M., Yaniv A., Dahlberg J. E., Gazit A., Skuntz S. F., Tronick S. R., Aaronson S. A. 1985; Nucleotide sequence evidence for relationship of AIDS retrovirus to lentiviruses. Nature 317:366–368
    [Google Scholar]
  9. Etzold T., Ulyanov A., Argos P. 1996; SRS: information retrieval system for molecular biology data banks. Methods in Enzymology 266:114
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368–376
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  12. Felsenstein J., Churchill G. A. 1996; A hidden Markov Model approach to variation among sites in rate of evolution. Molecular Biology and Evolution 13:93–104
    [Google Scholar]
  13. Frech K., Brack-Werner R., Werner T. 1996; Common modular structure of lentivirus LTRs. Virology 224:256–267
    [Google Scholar]
  14. Garvey K. J., Oberste M. S., Elser J. E., Braun M. J., Gonda M. A. 1990; Nucleotide sequence and genome organization of biologically active proviruses of the bovine immunodeficiency-like virus. Virology 175:391–409
    [Google Scholar]
  15. GCG 1991Program Manual for the Package version 7 April 1991, 7th edn. 575 Science Drive, Madison, Wisconsin, USA 53711, Genetics Computer Group:
    [Google Scholar]
  16. Hirsch V., Dapolito G., Goeken R., Campbell B. J. 1995a; Phylogeny and natural history of the primate lentiviruses, SIV and HIV. Current Opinion in Genetics & Development 5:798–806
    [Google Scholar]
  17. Hirsch V. M., Dapolito G., Johnson P. R., Elkins W. R., Montali R. J., Goldstein S., Brown C. 1995b; Induction of AIDS by simian immunodeficiency virus from an African green monkey: species-specific variation in pathogenicity correlates with the extent of in vivo replication. Journal of Virology 69:955–967
    [Google Scholar]
  18. Karr B. M., Chebloune Y., Leung K., Narayan O. 1996; Genetic characterization of two phenotypically distinct North American ovine lentiviruses and their possible origin from caprine arthritis-encephalitis virus. Virology 225:1–10
    [Google Scholar]
  19. Kirchhoff F., Jentsch K., Bachmann B., Stuke A., Laloux C., Lueke W., Stahl-Henning C., Schneider J., Nieselt K., Eigen M., Hunsmann G. 1990; A novel proviral clone of HIV-2: biological and phylogenetic relationship to other primate immunodeficiency viruses. Virology 177:305–311
    [Google Scholar]
  20. Knowles D. P., Cheevers W. P., McGuire T. C., Brassfield A. L., Harwood W. G., Stem T. A. 1991; Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus. Journal of Virology 65:5744–5750
    [Google Scholar]
  21. Kumar S., Tamura K., Nei M. 1993 MEGA : Molecular Evolutionary Genetics Analysis version 1.01 The Pennsylvania State University, University Park, PA 16802, USA:
    [Google Scholar]
  22. Leitner T., Escanilla D., Franzen C., Uhlen M., Albert J. 1996; Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis. Proceedings of the National Academy of Sciences, USA 93:10864–10869
    [Google Scholar]
  23. Leroux C., Vuillermoz S., Mornex J.-F., Greenland T. 1995; Genomic heterogeneity in the pol region of ovine lentiviruses obtained from bronchoalveolar cells of infected sheep from France. Journal of General Virology 76:1533–1537
    [Google Scholar]
  24. Li W.-H., Tanimura M., Sharp P. M. 1988; Rates and dates of divergence between AIDS virus nucleotide sequences. Molecular Biology and Evolution 5:313–330
    [Google Scholar]
  25. McKenzie J. 1991; Survey for caprine arthritis encephalitis antibodies in sheep. Surveillance 18:19–20
    [Google Scholar]
  26. Mindell D. P. 1996; Positive selection and rates of evolution in immunodeficiency viruses from humans and chimpanzees. Proceedings of the National Academy of Sciences, USA 93:3284–3288
    [Google Scholar]
  27. Mwaengo D. M., Grant R. F., DeMartini J. C., Carlson J. O. 1997; Envelope glycoprotein nucleotide sequence and genetic characterization of North American ovine lentiviruses. Virology 238:135–144
    [Google Scholar]
  28. Narayan O., Cork L. C. 1985; Lentiviral diseases ofsheep andgoats: chronic pneumonia, leukoencephalomyelitis and arthritis. Reviews of Infectious Diseases 7:89–98
    [Google Scholar]
  29. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418–426
    [Google Scholar]
  30. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Computer Applications in the Biosciences 10:41–48
    [Google Scholar]
  31. Ou C.-Y., Ciesielski C. A., Myers G., Bandea C. I., Luo C.-C., Korber B. T. M., Mullins J. I., Schochetman G., Berkelman R. L., Economou A. N., Witte J. J., Furman L. J., Satten G. A., MacInnes K. A., Curran J. W., Jaffe H. W. 1992; Molecular epidemiology of HIV transmission in a dental practice. Science 256:1165–1171
    [Google Scholar]
  32. Payne S. L., Rausch J., Rushlow K., Montelaro R. C., Issel C., Flaherty M., Perry S., Sellon D., Fuller F. 1994; Characterization of infectious molecular clones of equine infectious anaemia virus. Journal of General Virology 75:425–429
    [Google Scholar]
  33. Phillips T. R., Talbott R. L., Lamont C., Muir S., Lovelace K. M., Elder J. H. 1990; Comparison of two host cell range variants of feline immunodeficiency virus. Journal of Virology 64:4605–4613
    [Google Scholar]
  34. Quérat G., Audoly G., Sonigo P., Vigne R. 1990; Nucleotide sequence analysis of SA-OMVV, a visna-related ovine lentivirus - phylogenetic history of lentiviruses. Virology 175:434–447
    [Google Scholar]
  35. Rzhetsky A., Nei M. 1993; Theoretical foundation of the minimum- evolution method of phylogenetic inference. Molecular Biology and Evolution 10:1073–1095
    [Google Scholar]
  36. Rzhetsky A., Nei M. 1994; METREE : a program package for inferring and testing minimum-evolution trees. Computer Applications in the Biosciences 10:409–412
    [Google Scholar]
  37. Sacramento D., Badrane H., Bourhy H., Tordo N. 1992; Molecular epidemiology of rabies virus in France : comparison with vaccine strains. Journal of General Virology 73:1149–1158
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  39. Saltarelli M., Quérat G., Konings D. A. M., Vigne R., Clements J. E. 1990; Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179:347–364
    [Google Scholar]
  40. Sargan D. R., Bennet I. D., Cousens C., Roy D. J., Blacklaws B. A., Dalziel R. G., Watt N. J., McConnell I. 1991; Nucleotide sequence of EV1, a British isolate of maedi-visna virus. Journal of General Virology 72:1893–1903
    [Google Scholar]
  41. Scholtissek C. 1995; Molecular evolution of influenza viruses. Virus Genes 11:209–215
    [Google Scholar]
  42. Sherman L., Gazit A., Yaniv A., Dahlberg J. E., Tronick S. R. 1986; Nucleotide sequence analysis of the long terminal repeat of integrated caprine arthritis encephalitis virus. Virus Research 5:145–155
    [Google Scholar]
  43. Shpaer E. G., Mullins J. I. 1993; Rates of amino acid change in the envelope protein correlate with pathogenicity of primate lentiviruses. Journal of Molecular Evolution 37:57–65
    [Google Scholar]
  44. Smith J. S. 1989; Rabies virus epitopic variation: use in ecologic studies. Advances in Virus Research 36:215–254
    [Google Scholar]
  45. Smith V. W., Dickson J., Coackley W., Carman H. 1985; Response of merino sheep to inoculation with a caprine retrovirus. Veterinary Record 117:61–63
    [Google Scholar]
  46. Smith J. S., Fishbein D. B., Rupprecht C. E., Clark K. 1991; Unexplained rabies in three immigrants in the United States - a virologic investigation. New England Journal of Medicine 324:205–211
    [Google Scholar]
  47. Smith J. S., Orciari L. A., Yager P. A., Seidel H. D., Warner C. K. 1992; Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. Journal of Infectious Diseases 166:296–307
    [Google Scholar]
  48. Smith J. S., Orciari L. A., Yager P. A. 1995; Molecular epidemiology of rabies in the United States. Seminars in Virology 6:387–400
    [Google Scholar]
  49. Sokal R. R., Rohlf F. J. 1995 Biometry: the principles and practice of statistics in biological research, 3rd edn. New York: W. H. Freeman;
    [Google Scholar]
  50. Sonigo P. 1994; Variation and virulence of lentiviruses. Biofutur 135:8–10
    [Google Scholar]
  51. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369–382
    [Google Scholar]
  52. Steinhauer D. S., Holland J. J. 1986; Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. Journal of Virology 57:219–228
    [Google Scholar]
  53. Sutton K. A., Lin C. T., Harkiss G. D., McConnell I., Sargan D. R. 1997; Regulat ion of the long terminal repeat in visna virus by a transcription factor related to the AML/PEBP2/CBF superfamily. Virology 229:240–250
    [Google Scholar]
  54. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512–526
    [Google Scholar]
  55. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  56. Turelli P., Guiguen F., Mornex J. F., Vigne R., Quérat G. 1997; dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. Journal of Virology 71:4522–4530
    [Google Scholar]
  57. Valas S., Benoit C., Guionaud C., Perrin G., Mamoun R. Z. 1997; North American and French caprine arthritis-encephalitis viruses emerge from ovine maedi-visna viruses. Virology 237:307–318
    [Google Scholar]
  58. Vanhemert F. J., Berkhout B. 1995; The tendency of lentiviral open reading frames to become A-rich: constraints imposed by viral genome organization and cellular tRNA availability. Journal of Molecular Evolution 41:132–140
    [Google Scholar]
  59. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  60. Wilkinson L. 1990 SYSTAT: the System for Statistics Evanston, IL, USA: SYSTAT Inc;
    [Google Scholar]
  61. Woodward T. M., Carlson J. O., Delaconcha Bermejillo A., DeMartini J. C. 1995; Biological and genetic changes in ovine lentivirus strains following passage in isogeneic twin lambs. Journal of Acquired Immune Deficiency Syndromes and Human Retroviruses 8:124–133
    [Google Scholar]
  62. Yang Z. H. 1995; Evaluation of several methods for estimating phylogenetic trees when substitution rates differ over nucleotide sites. Journal of Molecular Evolution 40:689–697
    [Google Scholar]
  63. Yang Z. H. 1996a; Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11:367–372
    [Google Scholar]
  64. Yang Z. 1996b In Phylogenetic Analysis by Maximum Likelihood (PAML) version 1.2 pp. 1–32 Department of Integrative Biology, University of California, Berkeley, CA, USA:
    [Google Scholar]
  65. Yang Z., Goldman N., Friday A. 1995; Maximum likelihood trees from DNA sequences : a peculiar statistical estimation problem. Systematic Biology 44:384–399
    [Google Scholar]
  66. Zanoni R., Krieg A., Peterhans E. 1989; Detection of antibodies to caprine arthritis-encephalitis virus by protein G enzyme-linked immunosorbent assay and immunoblotting. Journal of Clinical Microbiology 27:580–582
    [Google Scholar]
  67. Zanoni R., Regli J., Peterhans E. 1991a; Diagnostik und Bekampfung der caprinen Arthritis-Encephalitis-Virus-Infektion. Mitteilungen des Bundesamtes für Veterinarwesen 8:60–61
    [Google Scholar]
  68. Zanoni R. G., Nauta I. M., Pauli U., Peterhans E. 1991b; Expression in Escherichia coli and sequencing of the coding region for the capsid protein of Dutch maedi-visna virus strain ZZV 1050: application of recombinant protein in enzyme-linked immunosorbent assay for the detection of caprine and ovine lentiviruses. Journal of Clinical Microbiology 29:1290–1294
    [Google Scholar]
  69. Zanoni R. G., Nauta I. M., Kuhnert P., Pauli U., Pohl B., Peterhans E. 1992; Genomic heterogeneity of small ruminant lentiviruses detected by PCR. Veterinary Microbiology 33:341–351
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-8-1951
Loading
/content/journal/jgv/10.1099/0022-1317-79-8-1951
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error