1887

Abstract

Human immunodeficiency virus type 2 (HIV-2) strains that infect cells in the absence of cellular CD4 emerge spontaneously after culture in CD4 T-cell lines. The HIV-2 strain can use the CXCR4 chemokine receptor for efficient entry into CD4 cells. Here we have shown that the rat homologue of CXCR4, in the absence of CD4, failed to mediate CD4-independent entry by ROD/B. Furthermore, using rat-human chimeric CXCR4 receptors we have demonstrated that the second extracellular loop (E2) of human CXCR4 is critical for HIV-2 infection of CD4 cells. E2 is also important for HIV-1 infection of CD4 cells. Our results therefore indicate that the role of E2 in HIV entry is conserved for HIV-1 and HIV-2 and for infection in the presence or absence of CD4.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-7-1793
1998-07-01
2022-08-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/7/9680144.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-7-1793&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. 1996; CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958
    [Google Scholar]
  2. Brelot A., Heveker N., Pleskoff O., Sol N., Alizon M. 1997; Role of the first and third extracellular domains of CXCR-4 for the human immunodeficiency virus coreceptor activity. Journal of Virology 71:4744–4751
    [Google Scholar]
  3. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W., Gerard N., Gerard C., Sodroski J. 1996; The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148
    [Google Scholar]
  4. Clapham P. R., Weiss R. A. 1997; Spoilt for choice of co-receptors. Nature 388:230–231
    [Google Scholar]
  5. Clapham P. R., Blanc D., Weiss R. A. 1991; Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 181:703–715
    [Google Scholar]
  6. Clapham P. R., McKnight Á., Weiss R. A. 1992; Human immunodeficiency virus type 2 infection and fusion of CD4-negative human cell lines: induction and enhancement by sCD4. Journal of Virology 66:3531–3537
    [Google Scholar]
  7. Cohen J. 1995; Differences in HIV strains may underlie disease patterns. Science 270:30–31
    [Google Scholar]
  8. Deng H., Liu R., Elmeier W., Choe S., Unutmaz D., Burkhart M., DiMarzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  9. Deng H., Unutmaz D., KewalRamani V. N., Littman D. R. 1997; Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300
    [Google Scholar]
  10. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158
    [Google Scholar]
  11. Dragic T., Alizon M. 1993; Different requirements for membrane fusion mediated by the envelopes of human immunodeficiency virus types 1 and 2. Journal of Virology 67:2355–2359
    [Google Scholar]
  12. Dragic T., Litwin V., Allaway G., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR5. Nature 381:667–673
    [Google Scholar]
  13. D’Souza M. P., Harden V. A. 1996; Chemokines and HIV-1 second receptors. Nature Medicine 2:1293–1300
    [Google Scholar]
  14. Endres M. J., Clapham P. R., Marsh M., Ahuja M., Davis Turner J., McKnight Á., Thomas J. F., Stoebenau-Haggarty B., Choe S., Vance P. J., Wells T. N. C., Power C. A., Sutterwala S. S., Doms R. W., Landau N. R., Hoxie J. A. 1996; CD4-independent infection by HIV-2 is mediated by Fusin/CXCR-4. Cell 87:745–756
    [Google Scholar]
  15. Farzan M., Choe H., Martin K., Marcon L., Hofmann W., Karlsson G., Sun Y., Barrett P., Marchand N., Sullivan N., Gerard N., Gerard C., Sodroski J. 1997; Two orphan seven-transmembrane segment receptors that are expressed in CD4-positive cells support simian immunodeficiency virus infection. Journal of Experimental Medicine 186:1405–1411
    [Google Scholar]
  16. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane G- protein coupled receptor. Science 272:872–877
    [Google Scholar]
  17. Hill C. M., Deng H., Unumatz D., KewalRamani V. N., Bastiani L., Gorny M. K., Zolla-Pazner S., Littman D. R. 1997; Envelope glycoproteins from human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus can use human CCR5 as coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. Journal of Virology 71:6296–6304
    [Google Scholar]
  18. Housset C., Lamas E., Courgnaud V., Boucher O., Girard P. M., Marche C., Bréchot C. 1993; Presence of HIV-1 in human parenchymal and non-parenchymal liver cells in vivo. Journal of Hepatology 19:252–258
    [Google Scholar]
  19. Lee S., Goldstein H., Baseler M., Adelberger J., Golding H. 1997; Human immunodeficiency virus type 1 infection of mature CD3hiCD8+ thymocytes. Journal of Virology 71:6671–6676
    [Google Scholar]
  20. Liao F., Alkhatib G., Peden K. W. C., Sharma G., Berger E. A., Farber J. M. 1997; STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line- tropic HIV-1. Journal of Experimental Medicine 185:2015–2023
    [Google Scholar]
  21. Livingstone W. J., Moore M., Innes D., Bell J. E., Simmonds P. The Edinburgh Heterosexual Transmission Study Group 1996; Frequent infection of peripheral blood CD8-positive T-lymphocytes with HIV-1. Lancet 348:649–654
    [Google Scholar]
  22. Loetscher M., Amara A., Oberlin E., Brass N., Legler D. F., Loetscher P., D’Apuzzo M., Meese E., Rousset D., Virelizier J.-L., Baggiolini M., Arenzana-Seisdedos F., Moser B. 1997; TYMSTR, a putative chemokine receptor selectively expressed in activated T cells, exhibits HIV-1 coreceptor function. Current Biology 7:652–660
    [Google Scholar]
  23. Lu Z.-H., Berson J. F., Chen Y.-H., Turner J. D., Zhang T.-Y., Sharron M., Jenks M. H., Wang Z.-X., Kim J., Rucker J., Hoxie J. A., Peiper S. C., Doms R. W. 1997; Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proceedings of the National Academy of Sciences, USA 94:6426–6431
    [Google Scholar]
  24. Mckinght Á., Clapham P. R., Weiss R. A. 1994; HIV-2 and SIV infection of nonprimate cell lines expressing human CD4 : restrictions to replication at distinct stages. Virology 201:8–18
    [Google Scholar]
  25. McKnight Á., Wilkinson D., Simmons G., Talbot S., Picard L., Ahuja M., Hoxie J. A., Clapham P. R. 1997; Inhibition of HIV fusion by a monoclonal antibody to a co-receptor (CXCR4) is both cell type and virus strain dependent. Journal of Virology 71:1662–1696
    [Google Scholar]
  26. McKnight Á., Dittmar M. T., Moniz-Pereira J., Ariyoshi K., Reeves J. D., Hibbits S., Whitby D., Aarons E., Proudfoot A. E. I., Whittle H., Clapham P. R. 1998; A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as coreceptors with CD4. Journal of Virology 72:4065–4071
    [Google Scholar]
  27. Moore J. P., Jameson B. A., Weiss R. A., Sattentau Q. J. 1993; The HIV-cell fusion reaction. In Viral Fusion Mechanisms pp 233–289 Bentz J. Edited by Boca Raton, FL: CRC Press;
    [Google Scholar]
  28. Moore J. P., Trkola A., Dragic T. 1997; Co-receptors for HIV-1 entry. Current Opinion in Immunology 9:551–562
    [Google Scholar]
  29. Picard L., Wilkinson D. A., McKnight Á., Gray P. W., Hoxie J. A., Clapham P. R., Weiss R. A. 1997; Role of the amino-terminal extracellular domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology 231:105–111
    [Google Scholar]
  30. Pleskoff O., Sol N., Labrosse B., Alizon M. 1997a; Human immunodeficiency virus strains differ in their ability to infect CD4+ cells expressing the rat homolog of CXCR-4 (fusin). Journal of Virology 71:3259–3262
    [Google Scholar]
  31. Pleskoff O., Tréboute C., Brelot A., Heveker N., Seman M., Alizon M. 1997b; A chemokine receptor encoded by the human cytomegalovirus is a cofactor for HIV-1 entry. Science 276:1874–1878
    [Google Scholar]
  32. Potempa S., Picard L., Reeves J. D., Wilkinson D., Weiss R. A., Talbot S. J. 1997; CD4-independent infection by human immunodeficiency virus type 2 strain ROD/B: the role of the N-terminal domain of CXCR-4 in fusion and entry. Journal of Virology 71:4419–4424
    [Google Scholar]
  33. Reeves J. D., Schulz T. F. 1997; The CD4-independent tropism of human immunodeficiency virus type 2 involves several regions of the envelope protein and correlates with a reduced activation threshold for envelope-mediated fusion. Journal of Virology 71:1453–1465
    [Google Scholar]
  34. Reeves J. D., McKnight Á., Potempa S., Simmons G., Gray P. W., Power C. A., Wells T. N. C., Weiss R. A., Talbot S. J. 1997; CD4- independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3 and V28 for entry. Virology 231:130–134
    [Google Scholar]
  35. Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., Carnegie G., Desselberger U., Gray P. W., Weiss R. A., Clapham P. R. 1996; Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either CXCR4 domains in CD4-independent HIV-2 entry Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70:8355–8360
    [Google Scholar]
  36. Sol N., Ferchal F., Braun J., Pleskoff O., Tréboute C., Ansard I., Alizon M. 1997; Usage of the coreceptors CCR-5, CCR-3, and CXCR- 4 by primary and cell line-adapted human immunodeficiency virus type 2. Journal of Virology 71:8237–8244
    [Google Scholar]
  37. Talbot S. J., Weiss R. A., Schulz T. F. 1995; Reduced glycosylation of human cell lines increases susceptibility to CD4-independent infection by human immunodeficiency virus type 2 (LAV-2/B). Journal of Virology 69:3399–3406
    [Google Scholar]
  38. Weiss R. A. 1993; Cellular receptors and viral glycoproteins involved in retrovirus entry. In The Retroviridae pp 1–108 Levy J. A. Edited by New York: Plenum Press;
    [Google Scholar]
  39. Wiley C. A., Schrier R. D., Nelson J. A., Lambert P. W., Oldstone M. B. 1986; Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proceedings of the National Academy of Sciences, USA 83:7089–7093
    [Google Scholar]
  40. Willett B. J., Hosie M. J., Neil J. C., Turner J. D., Hoxie J. A. 1997a; Common mechanism of infection by lentiviruses. Nature 385:587
    [Google Scholar]
  41. Willett B. J., Picard L., Hosie M. J., Turner J. D., Adema K., Clapham P. R. 1997b; Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. Journal of Virology 71:6407–6415
    [Google Scholar]
  42. Wong M.-L., Xin W. W., Duman R. S. 1996; Rat LCR1 : cloning and cellular distribution of a putative chemokine receptor in the brain. Molecular Psychiatry 1:133–140
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-7-1793
Loading
/content/journal/jgv/10.1099/0022-1317-79-7-1793
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error