1887

Abstract

A monoclonal antibody, LMBH6, was derived from mice which had been sequentially immunized with bromelain-cleaved haemagglutinin (BHA) from influenza virus A/Aichi/2/68, A/Victoria/3/75 and A/Philippines/2/82 (all H3N2). LMBH6 recognizes the haemagglutinin (HA) of all H3N2 influenza A strains tested, which were isolated between 1968 and 1989. HA in the low-pH-induced conformation is not recognized, and cleavage of the HA precursor to HA and HA is needed to obtain efficient binding. Compared to other monoclonal antibodies, binding of LMBH6 to virus and to virus-infected cells is weak, while binding to BHA is comparable. Electron microscopy demonstrates binding to the membrane proximal end of the stem structure. The antibody shows no haemagglutination-inhibition activity, but inhibits polykaryon formation and the low-pH- induced conformational change of BHA. However, LMBH6 cannot prevent infection of MDCK cells but slows the growth of virus when included in a plaque assay overlay.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-7-1781
1998-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/7/9680143.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-7-1781&mimeType=html&fmt=ahah

References

  1. Brand C. M., Skehel J. J. 1972; Crystalline antigen from the influenza virus envelope. Nature New Biology 238:145–147
    [Google Scholar]
  2. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. 1994; Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  3. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C. 1983a; .Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. Journal of General Virology 64:1657–1662
    [Google Scholar]
  4. Daniels R. S., Douglas A. R., Gonsalves-Scarano R., Palu G., Skehel J. J., Brown E., Knossow M., Wilson I. A., Wiley D. C. 1983b; Antigenic structure of influenza virus hemagglutinin. In The Origin of Pandemic Influenza Viruses pp 9–18 Laver W. G. Edited by New York, Amsterdam & Oxford: Elsevier;
    [Google Scholar]
  5. Godley L., Pfeifer J., Steinhauer D., Ely B., Shaw G., Kaufmann R., Suchanek E., Pabo C., Skehel J. J., Wiley D. C., Wharton S. 1992; Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza haemagglutinin abolishes membrane fusion activity. Cell 68:635–645
    [Google Scholar]
  6. Graves P. N., Schulman J. L., Young J. F., Palese P. 1983; Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: unmasking of cross-reactive determinants. Virology 126:106–116
    [Google Scholar]
  7. Green N., Alexander H., Olson A., Alexander S., Shinnick T. M., Sutcliff J. G., Lerner R. A. 1982; Immunogenic structure of the influenza virus haemagglutinin. Cell 28:477–487
    [Google Scholar]
  8. Hughey P. G., Roberts P. C., Holsinger L. J., Zebedee S. L., Lamb R. A., Compans R. W. 1995; Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212:411–421
    [Google Scholar]
  9. Kida H., Brown L. E., Webster R. G. 1982; Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Virology 122:38–47
    [Google Scholar]
  10. Kida H., Webster R. G., Yanagawa R. 1983; Inhibition of virus- induced hemolysis with monoclonal antibodies to different antigenic areas on the haemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Archives of Virology 76:91–99
    [Google Scholar]
  11. Kida H., Yoden S., Kuwabara M., Yanagawa R. 1985; Interference with a conformational change in the hemagglutinin molecule of influenza virus by antibodies as a possible neutralisation mechanism. Vaccine 3:219–222
    [Google Scholar]
  12. Klenk H.-D., Rott R., Orlich M., Blodorn J. 1975; Activation of influenza A viruses by trypsin treatment. Virology 68:426–439
    [Google Scholar]
  13. Kohler G., Milstein C. 1975; Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497
    [Google Scholar]
  14. Kostolansky F., Russ G., Mucha V., Styk B. 1988; Changes in the influenza virus haemagglutinin at acid pH detected by monoclonal antibodies to glycopolypeptides HA1 and HA2. Archives of Virology 101:13–24
    [Google Scholar]
  15. Laeeq S., Smith C. A., Wagner S. D., Thomas D. B. 1997; Preferential selection of receptor-binding variants of influenza virus hemagglutinin by the neutralizing antibody repertoire of transgenic mice expressing a human immunoglobulin y minigene. Journal of Virology 71:2600–2605
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Lazarovits J., Roth M. 1988; A single amino acid change in the cytoplasmic domain allows the influenza virus haemagglutinin to be endocytosed through coated pits. Cell 53:743–752
    [Google Scholar]
  18. Martin F. J., Hubbell W. L., Papahadjopoulos D. 1981; Immuno- specific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fabʹ fragments via disulphide bonds. Biochemistry 20:4229–4238
    [Google Scholar]
  19. Okuno Y., Isegawa Y., Sasao F., Ueda S. 1993; A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. Journal of Virology 67:2552–2558
    [Google Scholar]
  20. Okuno Y., Matsumoto K., Isegawa Y., Ueda S. 1994; Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. Journal of Virology 68:517–520
    [Google Scholar]
  21. Ruigrok R. W. H., Martin S. R., Wharton S. A., Skehel J. J., Bayley P. M., Wiley D. C. 1986; Conformational changes in hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155:484–497
    [Google Scholar]
  22. Ruigrok R. W. H., Aitken A., Calder L. J., Martin S. R., Skehel J. J., Wharton S. A., Weis W., Wiley D. C. 1988; Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. Journal of General Virology 69:2785–2795
    [Google Scholar]
  23. Russ G., Polakova K., Kostolansky F., Styk B., Vancikova M. 1987; Monoclonal antibodies to glycopolypeptides HA1 and HA2 of influenza virus hemagglutinin. Acta Virologica 31:374–386
    [Google Scholar]
  24. Sanchez-Fauqier A., Villanueva N., Melero J. A. 1987; Isolation of cross-reactive, subtype-specific monoclonal antibodies against influenza virus HA1 and HA2 haemagglutinin subunits. Archives of Virology 97:251–265
    [Google Scholar]
  25. Shahinian S., Silvius J. R. 1995; A novel strategy affords high-yield coupling of antibody Fabʹ fragments to liposomes. Biochimica et Biophysica Acta 1239:157–167
    [Google Scholar]
  26. Skehel J. J., Schild G. C. 1971; The polypeptide composition of influenza A viruses. Virology 44:396–408
    [Google Scholar]
  27. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, USA 79:968–972
    [Google Scholar]
  28. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. 1984; A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences, USA 81:1779–1783
    [Google Scholar]
  29. Tamura S., Asanuma H., Ito Y., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T., Oya A. 1992; Superior cross-protective effect of nasal vaccination to subcutaneous inoculation with influenza haemagglutinin vaccine. European Journal of Immunology 22:477–481
    [Google Scholar]
  30. Tamura S., Asanuma H., Ito Y., Yoshizawa K., Nagamine T., Aizawa C., Kurata T. 1994; Formulation of inactivated influenza vaccines for providing effective cross-protection by intranasal vaccination in mice. Vaccine 1994:310–316
    [Google Scholar]
  31. Vanlandschoot P., Maertens G., Jou W. M., Fiers W. 1993; Recombinant secreted hemagglutinin protects mice against a lethal challenge of influenza virus. Vaccine 11:1185–1187
    [Google Scholar]
  32. Vanlandschoot P., Beirnaert E., Dewilde S., Saelens X., Bestebroer T., De Jong J., MinJou W., Fiers W. 1995; A fairly conserved epitope on the hemagglutinin of influenza A (H3N2) virus with variable accessibility to neutralizing antibody. Virology 212:526–534
    [Google Scholar]
  33. Vanlandschoot P., Beirnaert E., Grooten J., Min Jou W., Fiers W. 1998; pH dependent aggregation and secretion of soluble monomeric influenza haemagglutinin. Archives of Virology 143:227–239
    [Google Scholar]
  34. Vareckova E., Mucha V., Ciampor F., Betakova T., Russ G. 1993; Monoclonal antibodies demonstrate accessible HA2 epitopes in minor subpopulations of native influenza virus haemagglutinin molecules. Archives of Virology 130:45–56
    [Google Scholar]
  35. Vareckova E., Betakova T., Mucha V., Solarika L., Kostolansky F., Waris M., Russ G. 1995; Preparation of monoclonal antibodies for the diagnosis of influenza A infection using different immunisation protocols. Journal of Immunological Methods 180:107–116
    [Google Scholar]
  36. Verhoeyen M., Fang R., MinJou W., Devos R., Huylebroeck D., Saman E., Fiers W. 1980; Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature 286:771–776
    [Google Scholar]
  37. Webster R. G., Brown L. E., Jackson D. C. 1983; Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH. Virology 126:587–599
    [Google Scholar]
  38. Wharton S. A., Skehel J. J., Wiley D. C. 1986; Studies of influenza hemagglutinin-mediated membrane fusion. Virology 149:27–35
    [Google Scholar]
  39. Wharton S. A., Calder L. J., Ruigrok R. W., Skehel J. J., Steinhauer D. A., Wiley D. C. 1995; Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. EMBO Journal 14:240–246
    [Google Scholar]
  40. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378
    [Google Scholar]
  41. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Å resolution. Nature 289:366–373
    [Google Scholar]
  42. Wrigley N. G., Brown E., Chillingworth R. K. 1983; Combining accurate defocus with low-dose imaging in high resolution electron microscopy of biological material. Journal of Microscopy 130:225–232
    [Google Scholar]
  43. Yewdell J. W., Gerhard W., Bachi T. 1983; Monoclonal antihemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis. Journal of Virology 48:239–248
    [Google Scholar]
  44. Yoden S., Kida H., Kuwabara M., Yanagawa R., Webster R. G. 1986; Spin-labeling of influenza virus haemagglutinin permits analysis of the conformational change at low pH and its inhibition by antibody. Virus Research 4:251–261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-7-1781
Loading
/content/journal/jgv/10.1099/0022-1317-79-7-1781
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error