1887

Abstract

Eight neutralizing and two non-neutralizing antifoot-and-mouth disease virus (FMDV) bovine IgG1 and IgG2 monoclonal antibodies (BMAbs) recognize conformationally dependent epitopes. The majority of those shown to neutralize virus passively protected mice from virus challenge, regardless of isotype. Well-characterized anti-FMDV mouse MAbs, representing five independent neutralizing epitopes on O serotype virus, were examined with each of the ten BMAbs in a competition-based ELISA. Five of the neutralizing BMAbs (C48, C65, C74, C83 and MH6) were shown to be directed against epitopes on, or in close proximity to, that previously defined as neutralizing antigenic site 2. Another neutralizing BMAb, MH5, bound to an epitope on, or in close proximity to antigenic site 3. Two neutralizing BMAbs (C2 and C96) simultaneously abrogated the binding of mouse antibodies to sites 2 and 4, contesting the autonomous nature of these two regions. None of the BMAbs were shown to be directed towards the immunodominant antigenic site 1. Sequence analyses of neutralization escape mutants supported the competition ELISA results, and included changes at site 2 (VP2 aa C78Y), site 3 (VP1 N46S) and site 4 (VP3 E58K). Additionally, a substitution at a previously unrecorded location (VP2 aa T188I) prevented the binding of site 2 (C48) and sites 2 and 4 (C2) directed BMAbs. Although the bovine and murine anti-FMDV repertoires may not be identical these results support the recognition of similar antigenic features. This is the first report characterizing anti-FMDV MAbs produced from a natural target host, the cow.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-7-1687
1998-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/7/9680132.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-7-1687&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337:709–716
    [Google Scholar]
  2. Acharya R., Fry E., Logan D., Stuart D. I., Fox G., Rowlands D., Brown F. 1990; Structure offoot-and-mouth disease virus. In Use of χ- Ray Crystallography in the Design of Antiviral Agents pp 161–171 Laver W. G., Air G. M. Edited by San Diego: Academic Press;
    [Google Scholar]
  3. Anderson D. V., Tucker E. M., Powell J. R., Porter P. 1987; Bovine monoclonal antibodies to F5(K99) pilus antigen of E. coli, produced by murine/bovine hybridomas. Veterinary Immunology and Immunopathology 15:233–237
    [Google Scholar]
  4. Arnold E., Rossmann M. G. 1990; Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3·0 Å. Journal of Molecular Biology 211:763–801
    [Google Scholar]
  5. Barnett P. V., Pullen L., Staple R. F., Lee L. J., Butcher R., Parkinson D., Doel T. R. 1996; A protective anti-peptide antibody against the immunodominant site of A24 Cruzeiro strain of foot-and- mouth disease virus and its reactivity with other subtype viruses containing the same minimum binding sequence. Journal of General Virology 77:1011–1018
    [Google Scholar]
  6. Bittle J. L., Houghten R. A. others 1982; Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298:30–33
    [Google Scholar]
  7. Brown F, Cartwright B. 1963; Purification of radioactive foot-and- mouth disease virus. Nature 199:1168–1170
    [Google Scholar]
  8. Brown F. 1990; Picornaviruses. In Immunochemistry of Viruses II The Basis for Serodiagnosis and Vaccines pp 153–169 Van Regenmortel M. H. V., Neurath A. R. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  9. Carpenter W. C., Rai D. V., Samuel A. R., Höfner M. C. 1986; Comparison of a radioactive and non-radioactive method for sequencing foot-and-mouth disease virus isolates. Revue Scientifique et Technique Office International des Epizooties 15:875–882
    [Google Scholar]
  10. Crowther J. R., Rowe C. A., Butcher R. 1993a; Characterization of monoclonal antibodies against a type SAT 2 foot-and-mouth disease virus. Epidemiology and Infection 111:391–406
    [Google Scholar]
  11. Crowther J. R., Farias S., Carpenter W. C., Samuel A. R. 1993b; Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. Journal of General Virology 74:1547–1553
    [Google Scholar]
  12. Curry S., Fry E., Blakemore W., Abu-Ghazaleh R., Jackson T., King A., Lea S., Newman J., Stuart D. 1997; Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. Journal of Virology 71:9743–9752
    [Google Scholar]
  13. DiMarchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N. 1986; Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232:639–641
    [Google Scholar]
  14. Flynn J. N., Harkiss G. D., Hopkins J. 1989; Generation of a sheep x mouse heterohybridoma cell line (1C6.3a6T.1D7) and evaluation of its use in the production of ovine monoclonal antibodies. Journal of Immunological Methods 121:237–246
    [Google Scholar]
  15. Garcia-Valcarcel M., Doel T., Collen T., Ryan M., Parkhouse M. E. 1996; Recognition of foot-and-mouth disease virus and its capsid protein VP1 by bovine peripheral T lymphocytes. Journal of General Virology 77:727–735
    [Google Scholar]
  16. Garmendia A. E., Borca M. V., Morgan D. O., Baxt B. 1989; Analysis of foot-and-mouth disease virus-neutralizing idiotypes from immune bovine and swine with anti-murine idiotype antibody probes. Journal of Immunology 143:3015–3019
    [Google Scholar]
  17. Groves D. J., Morris B. A., Clayton J. 1987; Preparation of a bovine monoclonal antibody to testosterone by interspecies fusion. Research in Veterinary Science 43:253–256
    [Google Scholar]
  18. Groves D. J., Clayton J., Morris B. A. 1988; A bovine monoclonal antibody to oestrone/oestradiol prepared by a (murine × bovine) × bovine interspecies fusion. Veterinary Immunology and Immunopathology 18:95–101
    [Google Scholar]
  19. Höfner M. C., Carpenter W. C., Donaldson A. I. 1993; Detection of foot-and-mouth disease virus RNA in clinical samples and cell culture isolates by amplification of the capsid coding region. Journal of Virological Methods 42:53–62
    [Google Scholar]
  20. Icenogle J. P., Minor P. D., Ferguson M., Hogle J. M. 1986; Modulation of humoral response to a 12-amino-acid site on the poliovirus virion. Journal of Virology 68:3324–3333
    [Google Scholar]
  21. Jackson T., Ellard F. M., AbuGhazaleh R., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W. I., King A. M. Q. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. Journal of Virology 70:5282–5287
    [Google Scholar]
  22. Kitson J. D. A., McCahon D., Belsham G. J. 1990; Sequence analysis of monoclonal antibody resistant mutants of type O foot-and- mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179:26–34
    [Google Scholar]
  23. Lea S., Hernández J., Blakemore W., Brocchi E., Curry S., Domingo E., Fry E., Abu-Ghazaleh R., King A. M. Q., Newman J., Stuart D., Mateu M. G. 1994; The structure and antigenicity of a serotype C foot-and-mouth disease virus. Structure 2:123–139
    [Google Scholar]
  24. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J., Parry N., Rowlands D., Stuart D., Fry E. 1993; Structure of a major immunogenic site of foot-and- mouth disease virus. Nature 362:566–568
    [Google Scholar]
  25. McCullough K. C., Crowther J. R., Butcher R. N. 1985; Alteration in antibody reactivity with foot-and-mouth disease virus (FMDV) 146S antigen before and after binding to a solid phase or complexing with specific antibody. Journal of Immunological Methods 82:91–100
    [Google Scholar]
  26. McCullough K. C., Parkinson D., Crowther J. R. 1988; Opsonisation-enhanced phagocytosis of foot-and-mouth disease virus. Immunology 65:187–192
    [Google Scholar]
  27. McGuire T. C., Musuoke A. J., Kurtti T. 1979; Functional properties of bovine IgG1 and IgG2; interaction with complement, macrophages, neutrophils and skin. Immunology 38:249–256
    [Google Scholar]
  28. Martínez M. A., Hernández J., Piccone M. E., Palma E. L., Domingo E., Mateu M. G. 1991; Two mechanisms of antigenic diversification of foot-and-mouth disease virus. Virology 184:695–706
    [Google Scholar]
  29. Mateu M. G. 1995; Review. Antibody recognition of picornaviruses and escape from neutralization: a structural review. Virus Research 38:1–24
    [Google Scholar]
  30. Mateu M. G., Martínez M. A., Capucci L., Andreu D., Giralt E., Sobrino F., Brocchi E., Domingo E. 1990; A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. Journal of General Virology 71:629–637
    [Google Scholar]
  31. Mateu M. G., Camarero J. A., Andreu D., Giralt E., Domingo E. 1995a; Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology 206:298–306
    [Google Scholar]
  32. Mateu M. G., Andreu D., Domingo E. 1995b; Antibodies raised in a natural host and monoclonal antibodies recognize similar antigenic features of foot-and-mouth disease virus. Virology 210:120–127
    [Google Scholar]
  33. Mulcahy G., Gale C., Robertson P., Iyisan S., DiMarchi R. D., Doel T. R. 1990; Isotype responses of infected virus-vaccinated and peptide- vaccinated cattle to foot-and-mouth disease virus. Vaccine 8:249–256
    [Google Scholar]
  34. Murray V. 1989; Improved double stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Research 17:8889
    [Google Scholar]
  35. Novotny J., Handschumacher M., Haber E., Bruccoleri R. E., Carlson W. B., Fanning D. W., Smith J. A., Rose G. D. 1986; Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proceedings of the National Academy of Sciences, USA 83:226–230
    [Google Scholar]
  36. Ostberg L., Pursch E. 1983; Human × (mouse × human) hybridomas stably producing human antibodies. Hybridoma 2:361–367
    [Google Scholar]
  37. Pfaff E., Mussgay M., Bohm H. O., Schulz G. E., Schaller H. 1982; Antibodies against a preselected peptide recognize and neutralize foot-and-mouth disease virus. EMBO Journal 1:869–874
    [Google Scholar]
  38. Ping L.-H., Lemon S. M. 1992; Antigenic structure of human hepatitis A virus defined by analysis of escape mutants selected against murine monoclonal antibodies. Journal of Virology 66:2208–2216
    [Google Scholar]
  39. Plumas-Marty B., Taibi A., Pessoa H., Verwaerde C., Loyens M., Pommier V., Velge P., Capron A., Ouaissi A. 1993; Trypanosoma cruzi glutathione-binding proteins (TcGBP): protection induced by native proteins in an experimental model and analysis of the antibody response. Research in Immunology 144:553–563
    [Google Scholar]
  40. Samuel A. R., Knowles N. J., Samuel G. D., Crowther J. R. 1991; Evaluation of a trapping ELISA for the differentiation of foot-and-mouth disease virus using monoclonal antibodies. Biologicals 19:299–310
    [Google Scholar]
  41. Sayle R. A., Milner-White E. J. 1995; RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences 20:374–376
    [Google Scholar]
  42. Sellei J. 1984; Interaction of bovine immunoglobulins with complement. Comparative Immunology, Microbiology and Infectious Diseases 10:93–98
    [Google Scholar]
  43. Smith T. J., Chase E. S., Schmidt T. J., Olson N. H., Baker T. S. 1996; Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383:350–354
    [Google Scholar]
  44. Spira G., Paizi M., Mazar S., Nussbaum G., Mukherjee S., Casadevall A. 1996; Generation of biologically active anti-Crypto-coccus neoformans IgG, IgE and IgA isotype switch variants antibodies by acridine orange mutagenesis. Clinical and Experimental Immunology 105:436–442
    [Google Scholar]
  45. Strohmaier K., Franze R., Adam K. H. 1982; Location and characterization of the antigenic portion of the FMDV immunizing protein. Journal of General Virology 59:295–306
    [Google Scholar]
  46. Thomas A. A. M., Woortmeijer R. J., Barteling S. J., Meloen R. H. 1988; Evidence for more than one important neutralizing site on foot- and-mouth disease virus. Archives of Virology 99:237–242
    [Google Scholar]
  47. Tucker E. M., Dain A. R., Clarke S. W., Donker R. A. 1984; Specific bovine monoclonal antibody produced by a re-fused mouse/calf hybridoma. Hybridoma 3:171–176
    [Google Scholar]
  48. Xie Q.-C., McCahon D., Crowther J. R., Belsham G. J., McCullough K. C. 1987; Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. Journal of General Virology 68:1637–1647
    [Google Scholar]
  49. Xu Y., Oomen R., Klein M. H. 1994; Residue at position 331 in the IgG1 and IgG4 C-H2 domains contributes to their differential ability to bind and activate complement. Journal of Biological Chemistry 269:3469–3474
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-7-1687
Loading
/content/journal/jgv/10.1099/0022-1317-79-7-1687
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error