1887

Abstract

Sequence analysis predicts that herpes simplex virus type 2 (HSV-2) strain HG52 contains an open reading frame, RL1, encoding a polypeptide equivalent to ICP34.5 of HSV-1. Similarly to HSV-1, deletion of the region spanning RL1 abolishes the virulence of HSV-2 strain HG52 and its ability to grow in stationary 3T6 cells. In contrast to HSV-1, the HSV-2 strain HG52 RL1 gene is predicted to contain a 154 bp intron. Previously, we have demonstrated that this intron is spliced from RL1 poly(A) mRNA at the predicted splice donor/ acceptor sites. To determine if the intron affects the function of ICP34.5 of HSV-2 strain HG52, we have constructed a virus, 2624, in which the RL1 intron is deleted: 2624 retains wild-type growth both and in 3T6 cells, indicating that the presence of an intron does not affect the function of RL1 in HSV-2 strain HG52. 2624 has wild-type growth kinetics in BHK21/C13 cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-7-1613
1998-07-01
2022-08-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/7/9680122.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-7-1613&mimeType=html&fmt=ahah

References

  1. Brown S. M., MacLean A. R., Harland J. E., Podlech J., Clements J. B. 1994a; ICP34.5 influences herpes simplex virus type 1 maturation and egress from infected cells in vitro . Journal of General Virology 75:3679–3686
    [Google Scholar]
  2. Brown S. M., MacLean A. R., Aitken J. D., Harland J. E. 1994b; Cell type and cell state determine differential in vitro growth of nonvirulent ICP34.5-negative mutants of herpes simplex virus. Journal of General Virology 75:2367–2377
    [Google Scholar]
  3. Brown S. M., MacLean A. R., McKie E. A. E., Harland J. 1997; The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63 amino acid domain conserved in ICP34.5, MyD116 and GADD34. Journal of Virology 71:9442–9449
    [Google Scholar]
  4. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotide reductase encoded by herpes simplex virus is a determinant of pathogenicity of the virus in mice and a valid antiviral target. Journal of General Virology 69:2607–2612
    [Google Scholar]
  5. Chou J., Roizman B. 1986; The terminal ‘a’ sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. Journal of Virology 57:629–637
    [Google Scholar]
  6. Chou J., Roizman B. 1990; The herpes simplex virus 1 gene for ICP34.5 which maps in the inverted repeats, is conserved in several limited-passage isolates but not in strain 17 syn+ . Journal of Virology 64:1014–1020
    [Google Scholar]
  7. Chou J., Roizman B. 1994; The herpes simplex virus gamma1 34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proceedings of the National Academy of Sciences, USA 91:5247–5251
    [Google Scholar]
  8. Chou J., Kern E. R., Whitley R. J., Roizman B. 1990; Mapping of herpes simplex virus-1 neurovirulence to γ34.5, a gene non-essential for growth in culture. Science 250:1262–1265
    [Google Scholar]
  9. Dolan A., McKie E., MacLean A. R., McGeoch D. J. 1992; Status of the ICP34.5 gene in herpes simplex virus type strain 17. Journal of General Virology 73:971–973
    [Google Scholar]
  10. Efstathiou S., Kemp S., Darby G., Minson A. C. 1989; The role of herpes simplex virus thymidine kinase in pathogenesis. Journal of General Virology 70:869–879
    [Google Scholar]
  11. Everett R. D. 1991; Construction and characterization of herpes simplex type 1 viruses without introns in immediate early gene 1. Journal of General Virology 72:651–659
    [Google Scholar]
  12. Harland J, Brown S. M. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 2 (strain HG52). Journal of General Virology 66:1305–1321
    [Google Scholar]
  13. Harland J., Bdour S., Brown S. M., MacLean A. R. 1996; The herpes simplex virus type 2 strain HG52 RL1gene contains a 154 bp intron as predicted from sequence analysis. Journal of General Virology 77:481–484
    [Google Scholar]
  14. He B., Chou J., Liebermann D. A., Hoffman B., Roizman B. 1996; The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma 34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. Journal of Virology 70:84–90
    [Google Scholar]
  15. Langunoff M., Roizman B. 1994; Expression of a herpes simplex virus open reading frame antisense to the γ 134.5 gene and transcribed by an RNA 3′ coterminal with the unspliced latency-associated transcript. Journal of Virology 68:6021–6028
    [Google Scholar]
  16. Larder B. A., Lisle J. J., Darby G. 1986; Restoration of wild-type pathogenicity to an attenuated DNA polymerase mutant of herpes simplex virus type 1. Journal of General Virology 67:2501–2506
    [Google Scholar]
  17. McGeoch D. J., Barnett B. C. 1991; Neurovirulence factor. Nature 353:609
    [Google Scholar]
  18. McGeoch D. J., Cunningham C., McIntyre G., Dolan A. 1991; Comparative sequence analysis of the long repeat region and adjoining parts of the long unique region in the genomes of herpes simplex viruses types 1 and 2. Journal of General Virology 72:3057–3075
    [Google Scholar]
  19. McKay E. M., McVey G., Marsden H. S., Brown S. M., MacLean A. R. 1993; The herpes simplex virus type 1 strain 17+ open reading frame RL1 encodes a polypeptide of apparent M r 37K equivalent to ICP34.5 ofherpes simplex virus type 1 strain F. Journal of General Virology 74:2493–2497
    [Google Scholar]
  20. McKie E. A. E., Hope G. R., Brown S. M., MacLean A. R. 1994; Characterization of the herpes simplex virus type 1 strain 17+ neurovirulence gene RL1 and its expression in a bacterial system. Journal of General Virology 75:733–741
    [Google Scholar]
  21. MacLean A. R., Fareed M. U., Robertson L., Harland J., Brown S. M. 1991; Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. Journal of General Virology 72:631–639
    [Google Scholar]
  22. MacLean C. A., Robertson L. M., Jamieson F. E. 1993; Characterization of the UL10 gene product of herpes simplex virus type 1 and investigation of its role in vivo . Journal of General Virology 74:975–983
    [Google Scholar]
  23. MacPherson I., Stoker M. G. 1962; Polyoma transformation of hamster cell lines: an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  24. Pyles R. B., Sawtell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness and reactivation from latency. Journal of Virology 66:6706–6713
    [Google Scholar]
  25. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. American Journal of Hygiene 27:493–497
    [Google Scholar]
  26. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  27. Sussman M. D., Lu Z., Kutish G., Alfonso C. L., Roberts P., Rock D. L. 1992; Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence associated gene of herpes simplex virus. Journal of Virology 66:5586–5589
    [Google Scholar]
  28. Taha M. Y., Clements G. B., Brown S. M. 1989a; A variant of herpes simplex virus type 2 strain HG52 with a 1·5 kb deletion in RL between 0 to 0·02 and 0·81 to 0·83 map units is non-neurovirulent for mice. Journal of General Virology 70:705–716
    [Google Scholar]
  29. Taha M. Y., Clements G. B., Brown S. M. 1989b; The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. Journal of General Virology 70:3073–3078
    [Google Scholar]
  30. Thompson R. L., Wagner E. K., Stevens J. G. 1983; Physical location of a herpes simplex virus type 1 function(s) specifically involved in HSV neurovirulence. Virology 131:180–192
    [Google Scholar]
  31. Thompson R. L., Rogers S. K., Zerhusen M. A. 1989; Herpes simplex virus neurovirulence and productive infection of neural cells is associated with a function which maps between 0·82 and 0·832 map units on the HSV-1 genome. Virology 172:435–450
    [Google Scholar]
  32. Whitely R. J. 1985; Herpes simplex viruses. In Virology, 2nd edn. pp. 1844–1877 Fields B. N., Knipe D. M., Channock R. M., Hirsch M. S., Melnick J. L., Moniath T. P., Roizman B. Edited by New York: Raven Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-7-1613
Loading
/content/journal/jgv/10.1099/0022-1317-79-7-1613
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error