1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) establishes latent infection of a certain population of CD4 host cells which could be long-term reservoirs for HIV-1. The expression of viral genes in such long-term infected cells is strongly regulated by cellular status, such as the phase of the cell cycle or stage of cell differentiation. Here, viral gene expression in synchronized U1 cells, a monocytic cell clone latently infected with HIV-1, was characterized. The expression of HIV-1 antigens was detected exclusively at G/M phase in U1 cells, irrespective of phorbol myristate acetate (PMA) treatment. The induction of HIV-1 gene expression in PMA-treated cells was due to the recruitment of NF-B with DNA-binding activity at G/M phase. Activated NF-B was induced only by PMAtreatment during the late G to S, but not after entering G phase, indicating that the transcriptional factor(s) involved in viral gene expression is also largely regulated by the host cell cycle. In contrast, the enhancement of antigen expression by treatment with tumour necrosis factor-alpha (TNF-) was cell cycle-independent. In fact, NF-B was activated 2 h after TNF- treatment at all stages of the cell cycle. Thus, the mechanisms of HIV-1 activation from latency in U1 cells by PMA and TNF- treatment are different. The model system using U1 cells shown here may provide insight into the mechanisms responsible for HIV-1 gene expression from latency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-6-1363
1998-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/6/9634076.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-6-1363&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Baeuerle P. A., Baltimore D. 1996; NF-KB: ten years after. Cell 87:13–20
    [Google Scholar]
  3. Bagasra O., Seshamma T., Oakes J. W., Pomerantz R. J. 1993; High percentages of CD4-positive lymphocytes harbor the HIV-1 provirus in the blood of certain infected individuals. AIDS 7:1419–1425
    [Google Scholar]
  4. Baldwin A. S. Jr Azizkhan J. C., Jensen D. E., Beg A. A., Coodly L. R. 1991; Induction of NF-KB DNA-binding activity during the Go-to-Gj transition in mouse fibroblasts. Molecular and Cellular Biology 11:4943–4951
    [Google Scholar]
  5. Bednarik D. P., Folks T. M. 1992; Mechanisms of HIV-1 latency. AIDS 6:3–16
    [Google Scholar]
  6. Biswas D. K., Salas T. R., Wang F., Ahlers C. M., Dezube B. J., Pardee A. B. 1995; A Tat-induced auto-up-regulatory loop for superactivation of the human immunodeficiency virus type 1 promoter. Journal of Virology 69:7437–7444
    [Google Scholar]
  7. Bukrinsky M. I., Stanwick T. L., Dempsey M. P., Stevenson M. 1991; Quiescent T lymphocytes as an inducible virus reservoir in HIV- 1 infection. Science 254:423–427
    [Google Scholar]
  8. Butera S. T., Roberts B. D., Lam L., Hodge T., Folks T. M. 1994; Human immunodeficiency virus type 1 RNA expression by four chronically infected cell lines indicates multiple mechanisms of latency. Journal of Virology 68:2726–2730
    [Google Scholar]
  9. Cao Y., Ho D. D., Todd J., Kokka R., Urdea M., Lifson J. D., Piatak M. Jr Chen S., Hahn B. H., Saag M. S., Shaw G. M. 1995; Clinical evaluation of branched DNA signal amplification for quantifying HIV type 1 in human plasma. AIDS Research and Human Retroviruses 11:353–361
    [Google Scholar]
  10. Chun T. -W., Carruth L., Finzi D., Shen X., DiGiuseppe J. A., Taylor H., Hermankova M., Chadwick K., Margolick J., Quinn T. C., Kuo Y. -H., Brookmeyer R., Zeiger M. A., Barditch-Crovo P., Siliciano R. F. 1997a; Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188
    [Google Scholar]
  11. Chun T. -W., Stuyver L., Mizell S. B., Ehler L. A., Mican J. A. M., Baseler M., Lloyd A. L., Nowak M. A., Fauci A. S. 1997b; Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy.. Proceedings of the National Academy of Sciences, USA 94:13193–13197
    [Google Scholar]
  12. Cotner T., Williams J. M., Christenson L., Shapiro H. M., Strom T. B., Strominger J. 1983; Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. Journal of Experimental Medicine 157:461–472
    [Google Scholar]
  13. Cullen B. R. 1991; Regulat ion of human immunodeficiency virusreplication. Annual Review of Microbiology 45:219–250
    [Google Scholar]
  14. Duckett C. S., Perkins N. D., Leung K., Agranoff A. B., Nabel G. J. 1995; Cytokine induction of nuclear factor KB in cycling and growth- arrested cells: evidence for cell cycle-independent activation. Journal of Biological Chemistry 270:18836–18840
    [Google Scholar]
  15. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. 1993; Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362
    [Google Scholar]
  16. Emiliani S., VanLint C., Fischle W., Paras P. Jr Ott M., Brady J., Verdin E. 1996; A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proceedings of the National Academy of Sciences, USA 93:6377–6381
    [Google Scholar]
  17. Evans R. B., Gottlieb P. D., Bose H. R. Jr 1993; Identification of a Rel-related protein in the nucleus during the S phase of the cell cycle. Molecular and Cellular Biology 13:6147–6156
    [Google Scholar]
  18. Folks T. M., Justement J., Kinter A., Dinarello C. A., Fauci A. S. 1987; Cytokine induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238:800–802
    [Google Scholar]
  19. Fujinaga K., Zhong Q., Nakaya T., Kameoka M., Meguro T., Yamada K., Ikuta K. 1995; Extracellular Nef protein regulates productive HIV-1 infection from latency. Journal of Immunology 155:5289–5298
    [Google Scholar]
  20. Gaynor R. 1992; Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 6:347–363
    [Google Scholar]
  21. Griffin G. E., Leung K., Folks T. M., Kunkel S., Nabel G. J. 1989; Activation of HIV gene expression during monocyte differentiation by induction of NF-KB. Nature 339:70–73
    [Google Scholar]
  22. Heller R. A., Kronke M. 1994; Tumor necrosis factor receptor- mediated signaling pathways. Journal of Cell Biology 126:5–9
    [Google Scholar]
  23. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. 1995; Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126
    [Google Scholar]
  24. Ikuta K., Morita C., Miyake S., Ito T., Okabayashi M., Sano K., Nakai M., Hirai K., Kato S. 1989; Expression of human immunodeficiency virus type 1 (HIV-1) Gag antigens on the surface of a cell line persistently infected with HIV-1 that highly expresses HIV-1 antigens. Virology 170:408–417
    [Google Scholar]
  25. Jones K. A., Peterlin B. M. 1994; Control of RNA initiation and elongation at the HIV-1 promoter. Annual Review of Biochemistry 63:717–743
    [Google Scholar]
  26. Kameoka M., Kimura T., Okada Y., Nakaya T., Kishi M., Ikuta K. 1995; High susceptibility of U937-derived subclones to infection with human immunodeficiency virus type 1 is correlated with virus-induced cell differentiation and superoxide generation. Immunopharmacology 30:89–101
    [Google Scholar]
  27. Kameoka M., Kimura T., Zheng Y.-H, Suzuki S., Fujinaga K., Luftig R. B., Ikuta K. 1997; Protease-defective, gp120-containing human immunodeficiency virus type 1 particles induce apoptosis more efficiently than does wild-type virus or recombinant gp120 protein in healthy donor-derived peripheral blood T cells. Journal of Clinical Microbiology 35:41–47
    [Google Scholar]
  28. Kishi M., Nishino Y., Ohki K., Kimura T., Ikuta K. 1993; Persistently human immunodeficiency virus type 1-infected T cell clone expressing only doubly spliced mRNA exhibits reduced cell surface CD4 expression. Japanese Journal of Cancer Research 84:153–162
    [Google Scholar]
  29. Kolesnick R., Golde D. W. 1994; The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328
    [Google Scholar]
  30. Li G., Simm M., Potash M. J., Volsky D. J. 1993; Human immunodeficiency virus type 1 DNA synthesis, integration, and efficient viral replication in growth-arrested T cells. Journal of Virology 67:3969–3977
    [Google Scholar]
  31. Lint C. V., Emiliani S., Ott M., Verdin E. 1996; Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO Journal 15:1112–1120
    [Google Scholar]
  32. McCune J. M. 1995; Viral latency in HIV disease. Cell 82:183–188
    [Google Scholar]
  33. Meichle A., Schutze S., Hensel G., Brunsing D., Kronke M. 1990; Protein kinase C-independent activation of nuclear factor KB by tumor necrosis factor. Journal of Biological Chemistry 265:8339–8343
    [Google Scholar]
  34. Michael N. L., Mo T., Merzouki A., O’Shaughnessy M., Oster C., Burke D. S., Redfield R. R., Birx D. L., Cassol S. A. 1995; Human immunodeficiency virus type 1 cellular RNA load and splicing patterns predict disease progression in a longitudinally studied cohort. Journal of Virology 69:1868–1877
    [Google Scholar]
  35. Nabel G. J. 1993; The role of cellular transcription factors in the regulation of human immunodeficiency virus gene expression. In Human Retroviruses pp 46–73 Cullen B. R. Edited by Oxford: IRL Press;
    [Google Scholar]
  36. Nabel G., Baltimore D. 1987; An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713
    [Google Scholar]
  37. Okada Y., Kimura T., Kameoka M., Kishi M., Azuma I., Ikuta K. 1995; Viral activation from latency during retrodifferentiation of U937 cells exposed to phorbol ester followed by infection with human immunodeficiency virus type 1. Immunopharmacology 30:27–39
    [Google Scholar]
  38. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. 1993; HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358
    [Google Scholar]
  39. Patterson B. K., Till M., Otto P., Goolsby C., Furtado M. R., McBride L. J., Wolinsky S. M. 1993; Detection of HIV-1 DNA and messenger RNA in individual cells by PCR-driven in situ hybridization and flow cytometry. Science 260:976–979
    [Google Scholar]
  40. Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. 1996; HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586
    [Google Scholar]
  41. Perelson A. S., Essunger P., Cao Y., Vasenen M., Hurley A., Saksela K., Markowitz M., Ho D. D. 1997; Decay characteristics of HIV-1- infected compartments during combination therapy. Nature 387:188–191
    [Google Scholar]
  42. Piatak M. Jr Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. 1993; High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259:1749–1754
    [Google Scholar]
  43. Pomerantz R. J., Trono D., Feinberg M. B., Baltimore D. 1990; Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61:1271–1276
    [Google Scholar]
  44. Pomerantz R. J., Bagasra O., Baltimore D., Baltimore D. 1992a; Cellular latency of human immunodeficiency virus type 1. Current Opinion in Immunology 4:475–480
    [Google Scholar]
  45. Pomerantz R., Seshamma T., Trono D. 1992b; Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev : potential implications for latency. Journal of Virology 66:1809–1813
    [Google Scholar]
  46. Schreck R., Rieber P., Baeuerle P. A. 1991; Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1. EMBO Journal 10:2247–2258
    [Google Scholar]
  47. Schreiber E., Matthias P., Muller M. M., Schaffner W. 1989; Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Research 17:6419
    [Google Scholar]
  48. Schuitemaker H., Kootstra N. A., Fouchier R. A. M., Hooibrink B., Miedema F. 1994; Productive HIV-1 infection of macrophages restricted to the cell fraction with proliferative capacity. EMBO Journal 13:5929–5936
    [Google Scholar]
  49. Spina C. A., Guatelli J. C., Richman D. D. 1995; Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4lymphocytes in vitro. Journal of Virology 69:2977–2988
    [Google Scholar]
  50. Takai A., Ogawara M., Tomono Y., Imajoh-Ohmi S., Tsutsumi O., Taketani Y., Inagaki M. 1996; Mitosis-specific phosphorylation of vimentin by protein kinase C coupled with reorganization of intracellular membranes. Journal of Cell Biology 133:141–149
    [Google Scholar]
  51. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn H. H., Saag M. S., Shaw G. M. 1995; Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122
    [Google Scholar]
  52. Weinberg J. B., Matthews T. J., Cullen B. R., Malim M. H. 1991; Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. Journal of Experimental Medicine 174:1477–1482
    [Google Scholar]
  53. Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. Y. 1990; HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–222
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-6-1363
Loading
/content/journal/jgv/10.1099/0022-1317-79-6-1363
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error