During immunodeficiency after sublethal haematoablative treatment, cytomegalovirus (CMV) infection interferes with haematopoietic reconstitution and can cause lethal bone marrow (BM) aplasia. The in vivo model of murine CMV infection has identified the BM stroma as the principal target site of CMV in the haematopoietic cord. The infected cell type is the reticular stromal cell which forms the stromal network and produces essential haemopoietins, such as stem-cell factor (SCF). The expression of SCF was found to be reduced in the infected stroma, but the stromal network was not disrupted and the number of infected stromal cells was too low to explain the functional deficiency. These facts call for a negatively regulating cytokine that is induced by the infection and that potentiates the direct effect of infection by down-regulating haemopoietins in uninfected bystander cells. Recent work has suggested that transforming growth factor (TGF)-beta1 might be the cytokine involved in CMV-induced BM aplasia. We show here that murine CMV indirectly induces the accumulation of mature TGF-beta1 in uninfected renal tubular epithelial cells and TGF-beta1 transcription in BM stromal cells, whereas infected renal glomerular and interstitial cells, hepatocytes and BM stromal cells do not coexpress mature TGF-beta1. Antiviral CD8 T-cell therapy prevented BM aplasia and also prevented the down-regulation of stromal SCF and interleukin-6 gene expression. Interestingly, however, the CD8 T cells did not preclude the up-regulation of mature TGF-beta1, but proved to be inducers of TGF-beta1 gene expression in BM stroma. These findings suggest that TGF-beta1 is not the mediator of BM aplasia.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error