1887

Abstract

Herpes simplex virus type 1 (HSV-1) gene potentially encodes a primary translation product of 91 residues with a signal sequence at the N terminus and a membrane anchor domain near the C terminus. Mutants were generated in this gene and utilized to characterize the encoded protein on SDS-PAGE as a 6·7 kDa species which fractionated with infected cell membranes, was a relatively abundant virion component, and was not detectably -glycosylated. The protein was identified by microsequencing as a 68 residue polypeptide formed by removal of 23 residues from the N terminus of the primary translation product. Cleavage of the signal sequence was also demonstrated by transcription and translation in the presence of microsomal membranes. The protein was efficiently solubilized along with envelope proteins by treatment of virions with a non-ionic detergent but only in the presence of a reducing agent, suggesting that it may be an envelope protein that is disulphide-linked to the tegument. It is apparent from mutational analysis that the 10 amino acid residues at the C terminus are not essential for synthesis of the protein, signal sequence cleavage, targeting to membranes and virions, linkage to the tegument and growth of virus in cell culture.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-4-813
1998-04-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/4/9568977.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-4-813&mimeType=html&fmt=ahah

References

  1. Albrecht J.-C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B., Honess R. W. 1992; Primary structure of the herpesvirus saimiri genome. Virology 66:5047–5058
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211
    [Google Scholar]
  3. Barker D. E., Roizman B. 1992; The unique sequence of the herpes simplex virus 1 L component contains an additional translated open reading frame designated UL49.5. Journal of Virology 66:562–566
    [Google Scholar]
  4. Barnett B. C., Dolan A., Telford E. A. R., Davison A. J., McGeoch D. J. 1992; A novel herpes simplex virus gene (UL49A) encodes a putative membrane protein with counterparts in other herpesviruses. Journal of General Virology 73:2167–2171
    [Google Scholar]
  5. Bean M. A., Bloom B. R., Heberman R. B., Old L. J., Oettgen H. F., Klein G., Terry W. D. 1975; Cell-mediated cytotoxicity for bladder carcinoma: evaluation of a workshop. Cancer Research 35:2902–2913
    [Google Scholar]
  6. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex type 1. The isolation of temperature sensitive mutants, their ordering into complementation groups and recombinational analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  7. Bryant M., Ratner L. 1990; Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proceedings of the National Academy of Sciences, USA 87:523–527
    [Google Scholar]
  8. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A. III Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  9. Coull J. M., Pappin D. J. C. 1990; A rapid fluorescent staining procedure for proteins electroblotted onto PVDF membranes. Journal of Protein Chemistry 9:259–260
    [Google Scholar]
  10. Cunningham C., Davison A. J. 1993; A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197:116–124
    [Google Scholar]
  11. Davison A. J., Davison M. D. 1995; Identification of structural proteins of channel catfish virus by mass spectrometry. Virology 206:1035–1043
    [Google Scholar]
  12. Davison A. J., Rixon F. J. 1985; Cloning of the DNA of Alphaherpesvirinae. In Developments on Molecular Virology 5 pp. 103–124 Becker Y. Edited by The Hague: Martinus Nijhoff;
    [Google Scholar]
  13. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6 : structure, coding content, and genome evolution. Virology 209:29–51
    [Google Scholar]
  14. Hall L. M., Draper K. G., Frink R. J., Costa R. H., Wagner E. K. 1982; Herpes simplex virus mRNA species mapping in EcoRI fragment I. Journal of Virology 43:594–607
    [Google Scholar]
  15. Jöns A., Graznow H., Kuchling R., Mettenleiter T. C. 1996; The UL49.5 gene of pseudorabies virus codes for an O-glycosylated structural protein of the viral envelope. Journal of Virology 70:1237–1241
    [Google Scholar]
  16. Liang X., Tang M., Manns B., Babiuk L. A., Zamb T. J. 1993; Identification and deletion mutagenesis of the bovine herpesvirus 1 dUTPase gene and a gene homologous to herpes simplex virus UL49.5. Virology 195:42–50
    [Google Scholar]
  17. Liang X., Chow B., Raggo C., Babiuk L. A. 1996; Bovine herpesvirus 1 UL49.5 homolog gene encodes a novel viral envelope protein that forms a disulfide-linked complex with a second virion structural protein. Journal of Virology 70:1448–1454
    [Google Scholar]
  18. Livingstone C., Jones I. 1989; Baculovirus expression vectors with single strand capability. Nucleic Acids Research 17:2366
    [Google Scholar]
  19. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  20. McLauchlan J., Rixon F. J. 1992; Characterization of enveloped tegument structures (L particles) produced by alphaherpesviruses : integrity of the tegument does not depend on the presence of capsid or envelope. Journal of General Virology 73:269–276
    [Google Scholar]
  21. MacLean C. A., Efstathiou S., Elliott M. L., Jamieson F. E., McGeoch D. J. 1991; Investigation of herpes simplex virus type 1 genes encoding multiply inserted membrane proteins. Journal of General Virology 72:897–906
    [Google Scholar]
  22. MacLean C. A., Dolan A., Jamieson F. J., McGeoch D. J. 1992; The myristylatedvirion proteins of herpes simplex virus type 1 : investigation of their role in the virus life cycle. Journal of General Virology 73:539–547
    [Google Scholar]
  23. MacLean C. A., Robertson L. M., Jamieson F. J. 1993; Characterization of the UL10 gene product of herpes simplex virus type 1 and investigation of its role in vivo . Journal of General Virology 74:975–983
    [Google Scholar]
  24. MacPherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  25. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. 1984; Efficient in vitro synthesis of biologically-active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12:7035–7056
    [Google Scholar]
  26. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. Journal of Virology 70:5975–5989
    [Google Scholar]
  27. Pappin D. J. C., Hojrup P., Bleasby A. J. 1993; Rapid identification of proteins by peptide-mass fingerprinting. Current Biology 3:327–332
    [Google Scholar]
  28. Pappin D. J. C., Rahman D., Hansen H. F., Jeffrey W., Sutton C. W. 1995; Peptide-mass fingerprinting as a tool for the rapid identification and mapping of cellular proteins. In Methods in Protein Structural Analysis pp. 161–173 Atassi M., Appella E. Edited by New York: Plenum;
    [Google Scholar]
  29. Pyles B. R., Sawtell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency. Journal of Virology 66:6706–6713
    [Google Scholar]
  30. Rawlinson W. D., Farrell H. E., Barrell B. G. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. Journal of Virology 70:8833–8849
    [Google Scholar]
  31. Rixon F. J., McLauchlan J. 1990; Insertion of DNA sequences at a unique restriction enzyme site engineered for vector purposes into the genome of herpes simplex virus type 1. Journal of General Virology 71:2931–2939
    [Google Scholar]
  32. Ross J., Williams M., Cohen J. I. 1997; Disruption of the varicella- zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro . Virology 234:186–195
    [Google Scholar]
  33. Russo J. J., Bohenzky R. A., Chien M.-C., Chen J., Yan M., Maddalena D., Parry J. P., Peruzzi D., Edelman I. S., Chang Y., Moore P. S. 1996; Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proceedings of the National Academy of Sciences, USA 93:14862–14867
    [Google Scholar]
  34. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166:368–379
    [Google Scholar]
  35. Szilágyi J. F., Cunningham C. 1991; Identification and characterization of a novel non-infectious herpes simplex virus-related particle. Journal of General Virology 72:661–668
    [Google Scholar]
  36. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  37. Telford E. A. R., Watson M. S., Aird H. C., Perry J., Davison A. J. 1995; The DNA sequence of equine herpesvirus 2. Journal of Molecular Biology 249:520–528
    [Google Scholar]
  38. Trus B. L., Homa F. L., Booy F. P., Newcomb W. W., Thomsen D. R., Cheng N., Brown J. C., Steven A. C. 1995; Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. Journal of Virology 69:7362–7366
    [Google Scholar]
  39. Yanagida N., Yoshida S., Nazerian K., Lee L. F. 1993; Nucleotide and predicted amino acid sequences of Marek’s disease virus homologues of herpes simplex virus major tegument proteins. Journal of General Virology 74:1837–1845
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-4-813
Loading
/content/journal/jgv/10.1099/0022-1317-79-4-813
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error