1887

Abstract

Lentiviruses replicate in cells of the immune system, and activation of immune cells has been shown to modulate virus replication. To determine the effects of macrophage activation on replication of equine infectious anaemia virus (EIAV), primary horse macrophage cultures (HMCs) were established from 20 different horses, infected with an avirulent strain of EIAV, and stimulated with 5 μg/ml of bacterial endotoxin. Supernatants collected from HMCs were assayed for the presence of tumour necrosis factor (TNF-) and for production of infectious virus. Results indicated that EIAV replication varied significantly ( ⩽ 0·0001) from horse to horse, regardless of the treatment of HMCs. Also, EIAV replication was significantly ( ⩽ 0·0001) decreased in HMCs stimulated with bacterial endotoxin as compared to untreated HMCs. No significant correlation was found between virus replication and production of TNF- following treatment of virus-infected cells with bacterial endotoxin. However, when HMCs were treated with endotoxin prior to virus infection, inhibition of EIAV replication was proportional to increasing levels of endotoxin. PCR and RT-PCR were used to amplify EIAV proviral DNA and mRNA sequences, respectively, at various time-points following infection. The results indicated that the early events of EIAV replication, up to and including transcription of multiple-spliced mRNAs, were not inhibited by treatment of EIAV-infected macrophages with bacterial endotoxin. This suggests that endotoxin treatment inhibits a posttranscriptional step in the virus replication cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-4-747
1998-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/4/9568970.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-4-747&mimeType=html&fmt=ahah

References

  1. Alexandersen S., Carpenter S. 1991; Characterization of variable regions in the envelope and S3 open reading frame of equine infectious anemia virus. Journal of Virology 65:4255–4262
    [Google Scholar]
  2. Bogerd H. P., Fridell R. A., Madore S., Cullen B. R. 1995; Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82:485–494
    [Google Scholar]
  3. Carpenter S., Chesebro B. 1989; Change in host cell tropism associated with in vitro replication of equine infectious anemia virus. Journal of Virology 63:2492–2496
    [Google Scholar]
  4. Carpenter S., Alexandersen S., Long M. J., Perryman S., Chesebro B. 1991; Identification of a hypervariable region in the long terminal repeat of equine infectious anemia virus. Journal of Virology 65:1605–1610
    [Google Scholar]
  5. Carvalho M., Derse D. 1993; Physical and functional characterization of transcriptional control elements in the equine infectious anemia virus promoter. Journal of Virology 67:2064–20 74
    [Google Scholar]
  6. Chowdhury I. H., Koyanagi Y., Kobayashi S., Hamamoto Y., Yoshiyama H., Yoshida T., Yamamoto N. 1990; The phorbol ester TPA strongly inhibits HIV-1-induced syncytia formation but enhances virus production: possible involvement of protein kinase C pathway. Virology 176:126–132
    [Google Scholar]
  7. Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., Goedert J. J., Buchbinder S. P., Vittinghoff E., Gomperts E., Donfield S., Vlahov D., Kaslow R., Saah A., Rinaldo C., Detels R., O’Brien S. J. 1996; Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–1862
    [Google Scholar]
  8. Folks T. M., Justement J., Kinter A., Dinarello C. A., Fauci A. S. 1987; Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238:800–802
    [Google Scholar]
  9. Folks T. M., Clouse K. A., Justement J., Rabson A., Duh E., Kehrl J. H., Fauci A. S. 1989; Tumor necrosis factor α induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proceedings of the National Academy of Sciences, USA 86:2365–2368
    [Google Scholar]
  10. Fu X.-D. 1995; The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680
    [Google Scholar]
  11. Gendelman H. E., Baca L., Turpin J. A., Kalter D. C., Hansen B. D., Orenstein J. M., Friedman R. M., Meltzer M. S. 1990a; Restriction of HIV replication in infected T cells and monocytes by interferon-α. AIDS Research and Human Retroviruses 6:1045–1049
    [Google Scholar]
  12. Gendelman H. E., Baca L. M., Turpin J., Kalter D. C., Hansen B., Orenstein J. M., Dieffenbach C. W., Friedman R. M., Meltzer M. S. 1990b; Regulat ion of HIV replication in infected monocytes by IFN-α. Journal of Immunology 145:2669–2676
    [Google Scholar]
  13. Gontarek R. R., Derse D. 1996; Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus rev protein regulate alternative splicing. Molecular and Cellular Biology 16:2325–2331
    [Google Scholar]
  14. Guidotti L. G., Borrow P., Hobbs M. V., Matzke B., Gresser I., Oldstone M. B. A., Chisari F. V. 1996; Viral cross talk: intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proceedings of the National Academy of Sciences, USA 93:4589–4594
    [Google Scholar]
  15. Huang Y., Paxton W. A., Wolinsky S. M., Neuman A. U., Zhang L., He T., Kang S., Ceradini D., Jin Z., Yazdanbakhsh K., Kuntsman K., Erickson D., Dragon E., Landau N. R., Phair J., Ho D. D., Koup R. A. 1996; The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nature Medicine 2:1240–1243
    [Google Scholar]
  16. Israel N., Hazan U., Alcami J., Munier A., Arenzana-Seisdedis F., Bachelerie F., Israel A., Virelizier J.-L. 1989; Tumor necrosis factor stimulates transcription of HIV-1 in human T lymphocytes, independently and synergistically with mitogens. Journal of lmmunology 143:3956–3960
    [Google Scholar]
  17. Kawakami T., Sherman L., Dahlbert J., Gazit A., Yaniv A., Tronick S. R., Aaronson S. A. 1987; Nucleotide sequence analysis of equine infectious anemia proviral DNA. Virology 158:300–312
    [Google Scholar]
  18. Kemeny L. J., Mott L. O., Pearson J. E. 1971; Titration of equine infectious anemia virus. Effect of dosage on incubation time and clinical signs. Cornell Veterinarian 61:687–695
    [Google Scholar]
  19. Kinter A. L., Poli G., Maury W., Folks T. M., Fauci A. S. 1990; Direct and cytokine-mediated activation of protein kinase C induces human immunodeficiency virus expression in chronically infected promonocytic cells. Journal of Virology 64:4306–4312
    [Google Scholar]
  20. Kono Y., Kobayashi K. 1970; Changes in pathogenicity of equine infectious anemia virus during passages in horse leukocyte cultures. National lnstitute of Animal Health Quarterly 10:106–112
    [Google Scholar]
  21. Kono Y., Kobayashi K., Fukunaga Y. 1973; Antigenic drift of equine infectious anemia virus in chronically infected horses. Archiv für die gesamte Virusforschung 41:1–10
    [Google Scholar]
  22. Kornbluth R. S., Oh P. S., Munis J. R., Cleveland P. H., Richman D. D. 1989; Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro . Journal of Experimental Medicine 169:1137–1151
    [Google Scholar]
  23. Kornbluth R. S., Oh P. S., Munis J. R., Cleveland P. H., Richman D. D. 1990; The role of interferons in the control of HIV replication in macrophages. Clinical Immunology and lmmunopathology 54:200–219
    [Google Scholar]
  24. Lairmore M. D., Post A. A., Goldsmith C. S., Folks T. M. 1991; Cytokine enhancement of simian immunodeficiency virus (SIV/mac) from a chronically infected cloned T-cell line (HuT-78). Archives of Virology 121:43–53
    [Google Scholar]
  25. Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R., MacDonald M. E., Stuhlmann H., Koup R. A., Landau N. R. 1996; Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377
    [Google Scholar]
  26. Manley J. L., Tacke R. 1996; SR proteins and splicing control. Genes & Development 10:1569–1579
    [Google Scholar]
  27. Maury W., Perryman S., Oaks J. L., Seid B. K., Crawford T., McGuire T., Carpenter S. 1997; Localized sequence heterogeneity in the long terminal repeats of in vivo isolates of equine infectious anemia virus. Journal of Virology 71:4929–4937
    [Google Scholar]
  28. Mellors J. W., Griffith B. P., Ortiz M. A., Landry M. L., Ryan J. L. 1991; Tumor necrosis factor-α/cachectin enhances human immunodeficiency virus type 1 replication in primary macrophages. Journal of lnfectious Diseases 163:78–82
    [Google Scholar]
  29. Meyer B. E., Leinkoth J. L., Malim M. H. 1996; Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus rev proteins: identification of a family of transferable nuclear export signals. Journal of Virology 70:2350–2359
    [Google Scholar]
  30. Meylan P. R., Guatelli J. C., Munis J. R., Richman D. D., Kornbluth R. S. 1993; Mechanisms for the inhibition of HIV replication by interferons -alpha, -beta, and -gamma in primary human macrophages. Virology 193:138–148
    [Google Scholar]
  31. Mufson R. A., Myers C., Turpin J. A., Meltzer M. 1992; Phorbol ester reduces constitutive nuclear NF-kB and inhibits HIV-1 production in mature human monocytic cells. Journal of Leukocyte Biology 52:637–644
    [Google Scholar]
  32. Narayan O., Clements J. E. 1989; Biology and pathogenesis of lentiviruses. Journal of General Virology 70:1617–1639
    [Google Scholar]
  33. Noiman S., Yaniv A., Sherman L., Tronick S. R., Gazit A. 1990; Pattern of transcription of the genome of equine infectious anemia virus. Journal of Virology 64:1839–1843
    [Google Scholar]
  34. Olafsson K., Smith M. S., Marshburn P., Carter S. G., Haskill S. 1991; Variation of HIV infectibility of macrophages as a function of donor, stage of differentiation, and site of origin. Journal of Acquired Immune Deficiency Syndromes 4:154–164
    [Google Scholar]
  35. Perryman L. E., O’Rourke K. I., McGuire T. C. 1988; Immune responses are required to terminate viremia in equine infectious anemia lentivirus infection. Journal of Virology 62:3073–3076
    [Google Scholar]
  36. Poli G., Orenstein J. M., Kinter A., Folks T. M., Fauci A. S. 1989; Interferon-α but not AZT suppresses HIV expression in chronically infected cell lines. Science 244:575–577
    [Google Scholar]
  37. Poli G., Kinter A., Justement J., Kehrl J., Bressler P., Stanley S., Fauci A. S. 1990; Tumor necrosis factor-α functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proceedings of the National Academy of Sciences, USA 87:782–785
    [Google Scholar]
  38. Pomerantz R. J., Feinberg M. B., Trono D., Baltimore D. 1990; Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression. Journal of Experimental Medicine 172:253–261
    [Google Scholar]
  39. Powell D. M., Amaral M. C., Wu J. Y., Maniatis T., Greene W. C. 1997; HIV Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing. Proceedings of the National Academy of Sciences, USA 94:973–978
    [Google Scholar]
  40. Salinovich O., Payne S. L., Montelaro R. C., Hussain K. A., Issel C. J., Schnorr K. L. 1986; Rapid emergence of novel antigenic and genetic variants of equine infectious anemia virus during persistent infection. Journal of Virology 57:71–80
    [Google Scholar]
  41. Screaton G. R., Caceres J. F., Mayeda A., Bell M. V., Plebanski M., Jackson D. G., Bell J. I., Gall J. G. 1995; Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO Journal 14:4336–4349
    [Google Scholar]
  42. Sellon D. C., Perry S. T., Coggins L., Fuller F. J. 1992; Wild-type equine infectious anemia virus replicates in vivo predominantly in tissue macrophages, not in peripheral blood monocytes. Journal of Virology 66:5906–5913
    [Google Scholar]
  43. Sellon D. C., Walker K. M., Russell K. E., Perry S. T., Fuller F. J. 1996; Phorbol ester stimulation of equine macrophage cultures alters expression of equine infectious anemia virus. Veterinary Microbiology 52:201–208
    [Google Scholar]
  44. Shih D. S., Carruth L. M., Anderson M., Clements J. E. 1992; Involvement of FOS and JUN in the activation of visna virus gene expression in macrophages through an AP-1 site in the viral LTR. Virology 190:84–91
    [Google Scholar]
  45. Shirazi Y., Pitha P. M. 1992; Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. Journal of Virology 66:1321–1328
    [Google Scholar]
  46. Sparger E. E., Shacklett B. L., Renshaw-Gegg L., Barry P. A., Pedersen N. C., Elder J. H., Luciw P. A. 1992; Regulat ion of gene expression directed by the long terminal repeat of the feline immunodeficiency virus. Virology 187:165–177
    [Google Scholar]
  47. Spira A. I., Ho D. D. 1995; Effect of different donor cells on human immunodeficiency virus type I replication and selection in vitro . Journal of Virology 69:422–429
    [Google Scholar]
  48. Stephens R. M., Derse D., Rice N. R. 1990; Cloning and characterization of cDNAs encoding equine infectious anemia Tat and putative Rev proteins. Journal of Virology 64:3716–3725
    [Google Scholar]
  49. Tsui L. A., Guidotti L. G., Ishikawa T., Chisari F. V. 1995; Post-transcriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proceedings of the National Academy of Sciences, USA 92:12398–12402
    [Google Scholar]
  50. Zahler A. M., Neugebauer K. M., Lane W. S., Roth M. B. 1993; Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260:219–222
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-4-747
Loading
/content/journal/jgv/10.1099/0022-1317-79-4-747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error