1887

Abstract

To explore further the role of VP4 as the rotavirus cell attachment protein, VP7 monoreassortants derived from the sialic-acid-dependent simian strain RRV and from the sialic-acid-independent human strains D, DS-1 and ST-3 were tested for susceptibility of infectivity of neuraminidase-treated MA-104 cells. Infectivity of RRV × D VP7 and RRV × ST-3 VP7 monoreassortants decreased when sialic acid was removed from the cell surface. However, of three separate RRV × DS-1 VP7 monoreassortants tested, only one was sialic-acid-dependent. Sequence analysis showed that both sialic-acid-independent strains contained a single amino acid change, Lys to Arg, at position 187. In addition, sialic-acid-independent infectivity was seen in one of 14 RRV VP4 neutralization escape mutants tested, and this strain was found to have a Gly to Glu change at amino acid position 150. These results indicate that positions 150 and 187 of VP4 play an important role in early rotavirus-cell interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-4-725
1998-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/4/9568967.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-4-725&mimeType=html&fmt=ahah

References

  1. Bass D. M., Baylor M. R., Chen C., Mackow E. R., Bremont M., Greenberg H. B. 1992; Liposome-mediated transfection of intact viral particles reveals that plasma membrane penetration determines per-missivity of tissue culture cells to rotavirus. Journal of Clinical Investigation 90:2313–2320
    [Google Scholar]
  2. Both G. W., Bellamy A. R., Mitchell D. B. 1994; Rotavirus protein structure and function. Current Topics in Microbiology and Immunology 185:67–105
    [Google Scholar]
  3. Clark S. M., Roth J. R., Clark M. L., Barnett B. B., Spendlove R. S. 1981; Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. Journal of Virology 39:816–822
    [Google Scholar]
  4. Conner M. E., Matson D. O., Estes M. K. 1994; Rotavirus vaccines and vaccination potential. Current Topics in Microbiology and Immunology 185:285–337
    [Google Scholar]
  5. Coulson B. S., Londrigan S. L., Lee D. J. 1997; Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proceedings of the National Academy of Sciences, USA 94:5389–5394
    [Google Scholar]
  6. Espejo R. T., Lópes S., Arias C. F. 1981; Structural polypeptides of simian rotavirus SA-11 and the effect of trypsin. Journal of Virology 37:156–160
    [Google Scholar]
  7. Estes M. K. 1996; Rotaviruses and their replication. In Fields Virology, 3rd edn. pp. 1657–1708 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven Publishers;
    [Google Scholar]
  8. Estes M. K., Graham D. Y., Mason B. B. 1981; Proteolytic enhancement of rotavirus infectivity: molecular mechanism. Journal of Virology 39:879–888
    [Google Scholar]
  9. Fernandes J., Tang D., Leone G., Lee P. W. 1994; Binding of reovirus to receptor leads to conformational changes in viral capsid proteins that are reversible upon virus detachment. Journal of Biological Chemistry 269:17043–17047
    [Google Scholar]
  10. Fiore L. H., Greenberg H. B., Mackow E. R. 1991; The VP8 fragment of VP4 is the rhesus rotavirus hemaglutinin. Virology 181:553–563
    [Google Scholar]
  11. Fuentes-Pananá E. M., López S., Gorziglia M., Arias C. F. 1995; Mapping the hemagglutination domain of rotavirus. Journal of Virology 69:2629–2632
    [Google Scholar]
  12. Fukudome K., Osamu Y., Konno T. 1989; Comparison of human, simian, and bovine rotavirus for requirement of sialic acid in hema-glutination and cell adsorption. Virology 172:192–205
    [Google Scholar]
  13. Giammaroli A. M., Mackow E. R., Fiore L., Greenberg H. B., Ruggeri F. M. 1996; Production and characterization of murine IgA monoclonal antibodies to the surface antigens of rhesus rotavirus. Virology 225:97–110
    [Google Scholar]
  14. Isa P., Lópes S., Segovia L., Arias C. F. 1997; Functional and structural analysis of the sialic acid-binding domain of rotavirus. Journal of Virology 71:6749–6756
    [Google Scholar]
  15. Keljo D. J., Smith A. K. 1988; Characterization of binding of simian rotavirus SA-11 to cultured epithelial cells. Journal of Pediatric Gastroenterology and Nutrition 7:249–256
    [Google Scholar]
  16. Larralde G., Li B., Kapikian A. Z., Gorziglia M. 1991; Serotype specific epitope(s) present on the VP8 subunit of rotavirus VP4 protein. Journal of Virology 65:3213–3218
    [Google Scholar]
  17. Ludert J. E., Feng N., Yu J. H., Broome R. L., Hoshino Y., Greenberg H. B. 1996; Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. Journal of Virology 70:487–493
    [Google Scholar]
  18. Mackow E. R., Shaw R. D., Matsui S. M., Vo P. T., Dang M. N., Greenberg H. B. 1988; The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proceedings of the National Academy of Sciences, USA 85:645–649
    [Google Scholar]
  19. Matsui S. M., Mackow E. R., Greenberg H. B. 1989; Molecular determinants of rotavirus neutralization and protection. Advances in Virus Research 36:181–214
    [Google Scholar]
  20. Méndez E., Arias C. F., López S. 1993; Binding to sialic acid is not an essential step for the entry of animal rotavirus to epithelial cells in culture. Journal of Virology 67:5253–5259
    [Google Scholar]
  21. Méndez E., Arias C. F., López S. 1996; Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. Journal of Virology 70:1218–1222
    [Google Scholar]
  22. Midthun K., Greenberg H. B., Hoshino Y., Kapikian A. Z., Wyatt R. G., Chanock R. M. 1985; Reassortant rotaviruses as potential live rotavirus vaccine candidates. Journal of Virology 53:949–954
    [Google Scholar]
  23. Rolsma M. D., Gelberg H. D., Kuhlenschmidt M. K. 1994; Assay for evaluation of rotavirus-cell interactions : identification of an enterocyte ganglioside fraction that mediates group A porcine rotavirus recognition. Journal of Virology 68:258–268
    [Google Scholar]
  24. Shaw A. L., Rothnagel R., Chen D., Ramig R. F., Chiu W., Prasad B. V. V. 1993; Three-dimensional visualization of rotavirus hemagglutinin structure. Cell 74:693–701
    [Google Scholar]
  25. Superti F., Donelli G. 1991; Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. Journal of General Virology 72:2467–2474
    [Google Scholar]
  26. Ward R. L., Mason B. B., Bernstein D. I., Sander D. S., Smith V. E., Zandle G. A., Rappaport R. S. 1997; Attenuation of a human rotavirus vaccine candidate did not correlate with mutations in the NSP4 protein gene. Journal of Virology 71:6267–6270
    [Google Scholar]
  27. Yeager M., Berriman J. A., Baker T. S., Bellamy A. R. 1994; Three-dimensional structure of rotavirus hemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO Journal 13:1011–1018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-4-725
Loading
/content/journal/jgv/10.1099/0022-1317-79-4-725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error