1887

Abstract

Herpes simplex virus type 1 (HSV-1) variant 1716 is deleted in the gene encoding ICP34.5 and is neuroattenuated after intracranial inoculation of mice. Although the mechanism of attenuation is unclear, this property has been exploited to eliminate experimental brain tumours. Previously, it was shown that infectious 1716 was recoverable for up to 3 days after intracranial inoculation suggesting that there may be limited replication in the central nervous system (CNS). Here it is demonstrated that 1716 replicates in specific cell types (predominantly CNS ependymal cells) of BALB/c mice, using im- munohistochemical, immunofluorescence, hybridization and virus titration studies. While 1716-infected mice exhibited no overt signs of encephalitis, histological analysis showed a persistent loss of the ependymal lining. Thus, although ICP34.5-deficient viruses are neuroattenuated, they do retain the ability to replicate in and destroy the ependyma of the murine CNS. A detailed understanding of the mechanism(s) of neuroattenuation and limited replication could lead to the rational design of safe HSV vectors for cancer and gene therapy in the CNS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-3-525
1998-03-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/3/9519831.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-3-525&mimeType=html&fmt=ahah

References

  1. Adams R. L., Springall D. R., Levene M. M., Bushell T. E. 1984; The immunocytochemical detection of herpes simplex virus in cervical smears - a valuable technique for routine use. Journal of Pathology 143:241–247
    [Google Scholar]
  2. Brown S. M., Harland J., MacLean A. R., Podlech J., Clements J. B. 1994a; Cell type and cell state determine differential in vitro growth of non-neurovirulent ICP34.5-negative herpes simplex virus types 1 and 2. Journal of General Virology 75:2367–2377
    [Google Scholar]
  3. Brown S. M., MacLean A. R., Aitken J. D., Harland J. 1994b; ICP34.5 influences herpes simplex virus type 1 maturation and egress from infected cells in vitro . Journal of General Virology 75:3679–3686
    [Google Scholar]
  4. Chou J., Roizman B. 1992; The γ134.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proceedings of the National Academy of Sciences, USA 89:3266–3270
    [Google Scholar]
  5. Chou J., Roizman B. 1994; Herpes simplex virus 1 y134.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proceedings of the National Academy of Sciences, USA 91:5247–5251
    [Google Scholar]
  6. Chou J., Kern E. R., Whitley R. J., Roizman B. 1990; Mapping of herpes simplex virus neurovirulence to γ134.5, a gene nonessential for growth in culture. Science 250:1262–1266
    [Google Scholar]
  7. Chou J., Poon A. W., Johnson J., Roizman B. 1994; Differential response of human cells to deletions and stop codons in the γ34.5 gene of herpes simplex virus. Journal of Virology 68:8304–8311
    [Google Scholar]
  8. Chou J., Chen J.-J., Gross M., Roizman B. 1995; Association of a, M r 90 000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF2a and premature shutoff of protein synthesis after infection with y34.5-mutants of herpes simplex virus 1. >Proceedings of the National Academy of Sciences, USA 92:10516–10520
    [Google Scholar]
  9. Chrisp C. E., Sunstrum J. C., Averill D. R. Jr Levine M., Glorioso J. C. 1989; Characterization of encephalitis in adult mice induced by intracerebral inoculation of herpes simplex virus type 1 (KOS) and comparison with mutants showing decreased virulence. Laboratory Investigation 60:822–830
    [Google Scholar]
  10. Deatly A. M., Spivack J. G., Lavi E., O’Boyle D. R. II Fraser N. W. 1988; Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. Journal of Virology 62:749–756
    [Google Scholar]
  11. Del Bigio M. R. 1993; Neuropathological changes caused by hydrocephalus. Acta Neuropathologica 85:573–585
    [Google Scholar]
  12. Del Bigio M. R. 1995; The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13
    [Google Scholar]
  13. Fraser N. W., Valyi-Nagy T. 1993; Viral, neuronal and immune factors which may influence herpes simplex virus (HSV) latency and reactivation. Microbial Pathogenesis 15:83–91
    [Google Scholar]
  14. Fraser N. W., Block T. M., Spivack J. G. 1992; The latency- associated transcripts of herpes simplex virus : RNA in search of function. Virology 191:1–8
    [Google Scholar]
  15. Gage F. H., Ray J., Fisher L. J. 1995; Isolation, characterization, and use of stem cells from the CNS. Annual Review of Neuroscience 18:159–192
    [Google Scholar]
  16. Hamilton R. L., Achim C., Grafe M. R., Fremont J. C., Miners D., Wiley C. A. 1995; Herpes simplex virus brainstem encephalitis in an AIDS patient. Clinical Neuropathology 14:45–50
    [Google Scholar]
  17. Hayashi K., Yuzo I., Yanagi K. 1986; Herpes simplex virus type 1- induced hydrocephalus in mice. Journal of Virology 57:942–951
    [Google Scholar]
  18. Honess R. W., Roizman B. 1974; Regulation of herpes macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  19. Honess R. W., Roizman B. 1975; Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proceedings of the National Academy of Sciences, USA 72:1276–1280
    [Google Scholar]
  20. Johnson K. P., Johnson R. T. 1972; Granular ependymitis: occurrence in myxovirus infected rodents and prevalence in man. American Journal of Pathology 67:511–526
    [Google Scholar]
  21. Johnson R. T. 1967; Chronic infectious neuropathic agents. Possible mechanisms of pathogenesis. Current Topics in Microbiology and Im-munology 40:3–8
    [Google Scholar]
  22. Johnson R. T. 1975; Hydrocephalus and viral infections. Developmental Medicine and Child Neurology 17:807–816
    [Google Scholar]
  23. Johnson R. T. 1982 Viral Infections of the Nervous System New York: Raven Press;
    [Google Scholar]
  24. Kesari S., Randazzo B. P., Valyi-Nagy T., Huang Q. S., Brown S. M., MacLean A. R., Lee V.M.-Y., Trojanowski J. Q., Fraser N. W. 1995; Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Laboratory Investigation 73:636–648
    [Google Scholar]
  25. Kesari S., Lee V.M.-Y., Brown S. M., Trojanowski J. Q., Fraser N. W. 1996; Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1. Journal of Neuroscience 16:5644–5653
    [Google Scholar]
  26. Laskin O. L., Stahl-Bayliss C. M., Morgello S. 1987; Concomitant herpes simplex virus type 1 and cytomegalovirus ventriculoencephalitis in acquired immunodeficiency syndrome. Archives of Neurology 44:843–847
    [Google Scholar]
  27. Lawrence M. S., Ho D. Y., Dash R., Sapolsky R. M. 1995; Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss. Proceedings of the National Academy of Sciences, USA 92:7247–7251
    [Google Scholar]
  28. McGeoch D. J., Barnett B. C. 1991; Neurovirulence factor. Nature 353:609
    [Google Scholar]
  29. McGeoch D. J., Cunningham C., McIntyre G., Dolan A. 1991; Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. Journal of General Virology 72:3057–3075
    [Google Scholar]
  30. McKie E. A., Hope R. G., Brown S. M., MacLean A. R. 1994; Characterization of the herpes simplex virus type 1 strain 17+ neurovirulence gene RL1 and its expression in a bacterial system. Journal of General Virology 75:733–741
    [Google Scholar]
  31. MacLean A. R., Ul-Fareed M., Robertson L., Harland J., Brown S. M. 1991; Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. Journal of General Virology 72:631–639
    [Google Scholar]
  32. Markovitz N. S., Baunoch D., Roizman B. 1997; The range and distribution of murine central nervous system cells infected with the γ(1)34.5-mutant of herpes simplex virus 1. Journal of Virology 71:5560–5569
    [Google Scholar]
  33. Martuza R. L., Malick A., Markert J. M., Ruffner K. I., Coen D. M. 1991; Experimental therapy ofhuman glioma by means of a genetically engineered virus mutant. Science 252:854–856
    [Google Scholar]
  34. Mohr I., Gluzman Y. 1996; A herpesvirus genetic element which affects translation in the absence of viral GADD34 function. EMBO Journal 15:4759–4766
    [Google Scholar]
  35. Nahmias A. J., Whitley R. J., Vistine A. N., Takei Y., Alford C. A. Jr 1982; Herpes simplex encephalitis: laboratory evaluations and their diagnostic significance. Journal of Infectious Diseases 145:829
    [Google Scholar]
  36. Notarianni E. L., Preston C. M. 1982; Activation of cellular stress protein genes by herpes simplex virus temperature-sensitive mutants which overproduce immediate early polypeptides. Virology 123:113–122
    [Google Scholar]
  37. Reynolds B. A., Weiss S. 1992; Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710
    [Google Scholar]
  38. Roizman B., Sears A. E. 1996; Herpes simplex viruses and their replication. In Fields Virology, 3rd edn. pp 2231–2295 Fields B. N., Knipe D. M., Howley P. A. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  39. Sarnat H. B. 1995; Ependymal reactions to injury: a review. Journal of Neuropathology and Experimental Neurology 54:1–15
    [Google Scholar]
  40. Simmons A., Tscharke D. C. 1992; Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. Journal of Experimental Medicine 175:1337–1344
    [Google Scholar]
  41. Spivack J. G., Fraser N. W. 1987; Detection of herpes simplex type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  42. Taha M. Y., Brown S. M., Clements G. B., Graham D. I. 1990; The JH2604 deletion variant of herpes simplex virus type 2 (HG52) fails to produce necrotizing encephalitis following intracranial inoculation of mice. Journal of General Virology 71:1597–1601
    [Google Scholar]
  43. Tenser R. B., Edris W., Hay K., Galan B. D. 1991; Expression of herpes simplex virus type 2 latency associated transcript in neurons and non-neurons. Journal of Virology 65:2745–2750
    [Google Scholar]
  44. Trojanowski J., Mantione R., Lee J., Seid D., You T., Inge L., Lee V. 1993; Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Experimental Neurology 122:283–294
    [Google Scholar]
  45. Trojanowski J. Q., Fung K.-M., Rorke L. B., Tohyama T., Yachnis A. T., Lee V.-Y. 1994; In vivo and in vitro models of medulloblastomas and other primitive neuroectodermal brain tumors of childhood. Molecular and Chemical Neuropathology 21:219–239
    [Google Scholar]
  46. Valyi-Nagy T., Deshmane S. L., Spivack J. G., Steiner I., Ace C. I., Preston C. M., Fraser N. W. 1991; Investigation of herpes simplex virus type 1 (HSV-1) gene expression and DNA synthesis during the establishment of latent infection by an HSV-1 variant, in1814, that does not replicate in mouse trigeminal ganglia. Journal of General Virology 72:641–649
    [Google Scholar]
  47. Valyi-Nagy T., Deshmane S. L., Raengsakulrach B., Nicosia M., Gesser R. M., Wysocka M., Dillner A., Fraser N. W. 1992; Herpes simplex virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice. Journal of Virology 66:7336–7345
    [Google Scholar]
  48. Valyi-Nagy T., Fareed M. U., O’Keefe J. S., Gesser R. M., MacLean A. R., Brown S. M., Spivack J. G., Fraser N. W. 1994a; The herpes simplex virus type 1 strain 17+ γ34.5 deletion mutant 1716 is avirulent in SCID mice. Journal of General Virology 75:2059–2063
    [Google Scholar]
  49. Valyi-Nagy T., Gesser R. M., Raengsakulrach B., Deshmane S. L., Randazzo B. P., Dillner A. J., Fraser N. W. 1994b; A thymidine kinase-negative HSV-1 strain establishes a persistent infection in SCID mice that features uncontrolled peripheral replication but only marginal nervous system involvement. Virology 199:484–490
    [Google Scholar]
  50. Whitley R. J. 1996; Herpes simplex viruses. In Fields Virology, 3rd edn. pp 2297–2342 Fields B. N., Knipe D. M., Howley P. A. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  51. Whitley R. J., Gnann J. W. 1993; The epidemiology and clinical manifestations of herpes simplex virus infections. In The Human Herpesviruses pp 69–105 Roizman B., Whitley R. J., Lopez C. Edited by New York: Raven Press;
    [Google Scholar]
  52. Whitley R. J., Lakeman A. D., Nahmias A. J., Roizman B. 1982a; DNA restriction enzyme analysis of herpes simplex virus isolates obtained from patients with encephalitis. New England Journal of Medicine 307:1060
    [Google Scholar]
  53. Whitley R., Soong S., Linneman C., Liu C., Pazin G., Alford C. 1982b; Herpes simplex encephalitis: clinical assessment. Journal of the American Medical Association 247:317–320
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-3-525
Loading
/content/journal/jgv/10.1099/0022-1317-79-3-525
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error