Analysis of human immunodeficiency virus type 1 (HIV-1) variants and levels of infection in dendritic and T cells from symptomatic HIV-1-infected patients Free

Abstract

Dendritic cells (DC) are required to initiate primary cellular immune responses. Human immunodeficiency virus type 1 (HIV-1) infection of DC may be central to transmission and persistence of virus and in the pathogenesis of AIDS. In symptomatic HIV-1-infected patients the proportion of DC in the mononuclear cell population was reduced. Provirus load in the T cells was 3–100 times higher than in DC and there was no correlation between the levels of infection in the two cell types. Phylogenetic analysis of amino acids in the V3 loop and flanking regions indicated intermingling of sequences and thus provides the first evidence for transfer of virus between DC and T cells In one of three patients analysed there were significant differences in amino acid residues in the V3 region. This may reflect reduced interactions between DC and T cells in infected individuals and for the existence of variants with a stronger tropism for DC, which could play a role in transmission by initiating infection in mucosal DC.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-2-247
1998-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/2/9472609.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-2-247&mimeType=html&fmt=ahah

References

  1. Asjo B., Albert J., Karlsson A., Morfeldt Manson L., Biberfeld G., Lidman K., Fenyo E. M. 1986; Replicative properties of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet ii:660–662
    [Google Scholar]
  2. Bagasra O., Pomerantz R. J. 1993; Human immunodeficiency virus type 1 provirus is demonstrated in peripheral blood monocytes in vivo-a study utilizing an in situ polymerase chain reaction. AIDS Research and Human Retroviruses 9:69–76
    [Google Scholar]
  3. Bagasra O., Seshamma T., Oakes J. W., Pomerantz R. J. 1993; High percentages of CD4-positive lymphocytes harbor the HIV-1 provirus in the blood of certain infected individuals. AIDS 1:1419–1425
    [Google Scholar]
  4. Belsito D. V., Sanchez R., Baer M. D., Valantine F., Thorbecke G. J. 1984; Reduced Langerhans’ cell Ia antigen and ATPase activity in patients with the acquired immunodeficiency syndrome. New England Journal of Medicine 310:1279–1282
    [Google Scholar]
  5. Blauvelt A., Clerici M., Lucey D. R., Steinberg S. M., Yarchoan R., Walker R., Shearer G. M., Katz S. I. 1995; Functional studies of epidermal Langerhans’ cells and blood monocytes in HIV-infected person. Journal of Immunology 154:3506–3515
    [Google Scholar]
  6. Cameron P. U., Forsum U., Teppler H., Granelli-Piperno A., Steinman R. M. 1992a; During HIV-1 infection most blood dendritic cells are not productively infected and can induce allogeneic CD4+ T cells clonal expansion. Clinical and Experimental Immunology 88:226–236
    [Google Scholar]
  7. Cameron P. U., Freudenthal P. S., Barker J. M., Gezelter S., Inaba K., Steinman R. M. 1992b; Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257:383–387
    [Google Scholar]
  8. Cameron P. U., Lowe M. G., Crowe S. M., O’Doherty U., Pope M., Gezelter S., Steinman R. M. 1994; Susceptibility of dendritic cells to HIV-1 infection in vitro. Journal of Leukocyte Biology 56:257–165
    [Google Scholar]
  9. Caux C., Dezutter-Dambuyant C., Schmitt D., Banchereau J. 1992; GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans’ cells. Nature 360:258–261
    [Google Scholar]
  10. Chehimi J., Prakash K., Shanmugan V., Collman R., Jackson S. J., Bandyopadhyay S., Starr S. E. 1993; CD4 independent infection of human peripheral blood dendritic cells with isolates of human immunodeficiency virus type 1. Journal of General Virology 74:1277–1275
    [Google Scholar]
  11. Cheng-Mayer C., Seto D., Tateno M., Levy J. A. 1988; Biological features of HIV-1 that correlate with virulence in the host. Science 240:80–82
    [Google Scholar]
  12. Chesebro B., Wehrly K., Nishio J., Perryman S. 1992; Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T cell-tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66:6547–6554
    [Google Scholar]
  13. Dayhoff M. O. 1979Atlas of Protein Sequence and Structure 5: suppl 31978National Biomedical Research Foundation, Washington, DC
    [Google Scholar]
  14. DeJong J. J., De Ronde A., Keulen W., Tersmette M., Goudsmit J. 1992; Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype : analysis by single amino acid substitution. Journal of Virology 65:6777–6780
    [Google Scholar]
  15. Deng H., Lui R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Dimarzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  16. Donaldson Y. K., Bell J. E., Holmes E. C., Hughes E. S., Brown H. K., Simmonds P. 1994; In vivo distribution and cytopathology of variants of human immunodeficiency virus type 1 showing restricted sequence variability in the V3 loop. Journal of Virology 68:5991–6005
    [Google Scholar]
  17. Dragic T. V., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashimu K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673
    [Google Scholar]
  18. Felsenstein J. 1989; PHYLIP - phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  19. Fenyo E. M., Morfeldt-Manson L., Chiodi F., Lind B., Von Gegerfelt A., Albert J., Olausson E., Asjo B. 1988; Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 62:4414–4419
    [Google Scholar]
  20. Ferbas J. J., Toso J., Logar A. J., Navratil J. S., Rinaldo C. 1994; CD4+ dendritic cells are potent inducers of IFN-a in response to in vitro HIV-1 infection. Journal of Immunology 152:4649–4662
    [Google Scholar]
  21. Fossum S. 1989; Dendritic leukocytes: features of their in vivo physiology. Research in Immunology 140:883–891
    [Google Scholar]
  22. Fouchier R. A. M., Groenink M., Kootstra A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. 1992; Phenotype associated sequence variation in the third hyper variable domain of human immunodeficiency virus type 1 gp120 molecule. Journal of Virology 66:3183–3187
    [Google Scholar]
  23. Fouchier R. A., Brouwer M., Broersen S. A., Schuitmaker H. 1995; Simple determination of human immunodeficiency virus type 1 syncytium-inducing V3 genotype by PCR. Journal of Clinical Microbiology 33:906–911
    [Google Scholar]
  24. Freed E. O., Myers D. J., Risser R. 1991; Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain. Journal of Virology 65:190–194
    [Google Scholar]
  25. Grez M., Deitrich U., Balfe P., Von Breisen H., Maniar J. K., Mahambre G., Delwart E. L., Mullins J. I., Rubsamen-Waigmann H. 1994; Genetic analysis of HIV-1/HIV-2 mixed infections in India reveals a recent spread of HIV-1 and HIV-2 from a single ancestor for each of these viruses. Journal of Virology 68:2161–2168
    [Google Scholar]
  26. Granelli-Piperno A., Moser B., Pope M., Chen D., Wei Y., Isdell F., O’Doherty U., Paxton W., Koup R., Mojsov S., Bhardwaj N., Clarke-Lewis I., Baggiolini M., Steinman R. M. 1996; Efficient interaction of HIV-1 with purified dendritc cells via multiple chemokine coreceptors. Journal of Experimental Medicine 184:2433–2438
    [Google Scholar]
  27. Ho D. D., Neumann A. U., Perelson A. S., Chen V. W., Leonard J. M., Markowitz M. 1995; Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126
    [Google Scholar]
  28. Hsia K., Spector S. A. 1991; Human immunodeficiency virus DNA is present in a high percentage of CD4+ lymphocytes of seropositive individuals. Journal of Infectious Diseases 164:470–475
    [Google Scholar]
  29. Hwang S. S., Boyle J. J., Lyerly H. K., Cullen B. R. 1991; Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74
    [Google Scholar]
  30. Innocenti P., Ottmann M., Morand P., Leclercq P., Seigneurin J. M. 1992; HIV-1 in blood monocytes: frequency of detection of proviral DNA using PCR and comparison with the total CD4 count. AIDS Research and Human Retroviruses 8:261–268
    [Google Scholar]
  31. Jurriaans S., Dekker J. T., Deronde A. 1992; HIV-1 viral DNA load in peripheral blood mononuclear cells from seroconverters and long-term infected individuals. AIDS 6:635–641
    [Google Scholar]
  32. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  33. Knight S. C., Patterson S. 1997; Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immuno-pathology. Annual Review of Immunology 15:593–616
    [Google Scholar]
  34. Knight S. C., Stagg A. J. 1993; Antigen-presenting cell types. Current Opinion in Immunology 8:233–234
    [Google Scholar]
  35. Korber B., Myers G. 1992; Signature pattern analysis: a method for analysing viral sequence relatedness. AIDS Research and Human Retroviruses 8:1549–1560
    [Google Scholar]
  36. Langhoff E., Terwilliger E. F., Bos H. J., Kalland K. H., Pozansky M. C., Bacon O. M. L., Haseltine W. A. 1991; Replication of human immunodeficiency virus type 1 in primary dendritic cells. Proceedings of the National Academy of Sciences, USA 88:7998–8002
    [Google Scholar]
  37. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. 1990; Conserved sequence and structural elements to the HIV-1 principal neutralizing determinant. Science 249:932–935
    [Google Scholar]
  38. Livingstone W. J., Moore M., Innes D., Bell J. E., Simmonds P. 1996; Frequent infection of peripheral blood CD8-positive T-lymphocytes with HIV-1. Lancet 348:649–654
    [Google Scholar]
  39. Ludewig B., Holzeister J., Rokes K., Gentile M., Becker Y., Gelderblom H. R., Pauli G. 1995; Replication pattern of human immunodeficiency virus type 1 in mature Langerhans’ cells. Journal of General Virology 76:1317–1325
    [Google Scholar]
  40. Macatonia S. E., Patterson S., Knight S. C. 1989; Suppression of immune responses by dendritic cells infected with HIV. Immunology 67:285–289
    [Google Scholar]
  41. Macatonia S. E., Lau R., Patterson S., Pinching A. J., Knight S. C. 1990; Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology 71:38–45
    [Google Scholar]
  42. Macatonia S. E., Gompels M., Pinching A. J., Patterson S., Knight S. C. 1992; Antigen presentation by macrophages but not by dendritic cells in human immunodeficiency virus (HIV) infection. Immunology 75:576–581
    [Google Scholar]
  43. Meyerhans A., Cheynier R., Albert J., Seth M., Kwok S., Sninsky J., Morfeldt Manson L., Asjo B., Wain Hobson S. 1989; Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 58:901–910
    [Google Scholar]
  44. Milich L., Margolin B., Swanson R. 1993; V3 loop of the human immunodeficiency virus type 1 Env protein: interpreting sequence variability. Journal of Virology 67:5623–5634
    [Google Scholar]
  45. O’Brien W. A., Koyanagi Y., Namazie A., Zhao J-Q., Diagne A., Idler K., Zack J. A., Chen I. S. Y. 1990; HIV-1 tropism can be determined by a region of gp120 outside the CD4 binding region. Nature 348:69–73
    [Google Scholar]
  46. O’Doherty U., Steinman R. M., Peng M., Cameron P. U., Gezelter S., Kopeloff I., Swiggard W. J., Pope M., Bhardwaj N. 1993; Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. Journal of Experimental Medicine 178:1067–1078
    [Google Scholar]
  47. Patterson S., Knight S. C. 1987; Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. Journal of General Virology 68:1177–1181
    [Google Scholar]
  48. Patterson S., Macatonia S. E., Gross G., Bedford P., Knight S. C. 1991a; HIV infection of peripheral blood dendritic cells. In Skin Langerhans (Dendritic) Cells in Virus Infections and AIDS pp. 141–156 Becker Y. Edited by Boston: Kluwer Academic;
    [Google Scholar]
  49. Patterson S., Gross J., Bedford P. A., Knight S. C. 1991b; Morphology and phenotype of dendritic cells from peripheral blood and their productive and non-productive infection with human immunodeficiency virus type 1. Immunology 72:361–367
    [Google Scholar]
  50. Patterson S., Gross J., English N., Stackpoole A., Bedford P., Knight S. C. 1995; CD4 expression on dendritic cells and their infection by human immunodeficiency virus. Journal of General Virology 76:1155–1163
    [Google Scholar]
  51. Perelson A. S., Neumann A. U., Markowitz M., Lenard J. M., Ho D. D. 1996; HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span and viral generation time. Science 271:1582–1586
    [Google Scholar]
  52. Pope M., Betjes M. G. H., Romani N., Hirmand H., Cameron P. U., Hoffman L., Gezelter S., Schuler G., Steinman R. M. 1994; Conjugates of dendritic cells and memory T lymphocytes facilitate productive infection with HIV-1. Cell 78:389–398
    [Google Scholar]
  53. Pope M., Gezelter S., Gallo N., Hoffman L., Steinman R. 1995; Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. Journal of Experimental Medicine 182:2045–2056
    [Google Scholar]
  54. Reid C. D. L., Stackpoole A., Meager A., Tikerpae J. 1992; Interaction of tumor necrosis factor and other cytokines in the regulation of dendritic cells growth in vitro from early bipotent CD34+ progenitors in human bone marrow. Journal of Immunology 149:2681–2688
    [Google Scholar]
  55. Roos M. T. L., Lange J. M. A., Goede R. E. Y., Coutinho R. A., Schellekens P. T. A., Miedema F., Tersmette M. 1992; Viral phenotype and immune response in primary human immunodeficiency type 1 infection. Journal of Infectious Diseases 165:427–432
    [Google Scholar]
  56. Saitou N., Nei M. 1987; The neighbor-joining method : a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  57. Salomon B., Lores P., Pioche C., Racz P., Jami J., Klatzman D. 1994; Conditional ablation of dendritic cells in transgenic mice. Journal of Immunology 152:537–548
    [Google Scholar]
  58. Schnittman S. M., Psallidopoulos M. C., Lane H. C., Thomson L., Baseler M., Massari F., Fox C. H., Salzman N. P., Fauci A. S. 1989; The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245:305–308
    [Google Scholar]
  59. Shioda T., Levy J. A., Cheng-Mayer C. 1991; Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349:167–169
    [Google Scholar]
  60. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop J. O., Leigh Brown A. J. 1990; Human immunodeficiency virus-infected individuals contain provirus in small numbers in peripheral mononuclear cells and at low copy numbers. Journal of Virology 64:864–872
    [Google Scholar]
  61. Soto-Ramirez L. E., Renjifo B., McLane M. F., Marlink R., O’Hara C., Sutthent R., Wasi C., Vithayasai P., Vithayasai V., Apichartpiyakul C., Auewarakul P., Cruz V. P., Chui D.-S., Osathanondh R., Mayer K., Lee T.-H., Essex M. 1996; HIV-1 Langerhans’ cell tropism associated with heterosexual transmission of HIV. Science 271:1291–1293
    [Google Scholar]
  62. Spira A. I., Marx P. A., Patterson B. K., Mahoney J., Koup R. A., Wolinsky S. M., Ho D. D. 1996; Cellular targets of infection and route of virus dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. Journal of Experimental Medicine 183:215–225
    [Google Scholar]
  63. Tersmette M. J., Lange J. M., Goede R. E. Y., De Wolf F., Eeftink-Schattenkerk J. K. M., Schellekens P. T., Coutinho R. A., Huisman J. G., Goudsmit J., Miedema F. 1989; Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet i:983–985
    [Google Scholar]
  64. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  65. Wei P., Ghosh S. J., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H., Saag M. S., Shaw G. M. 1995; Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122
    [Google Scholar]
  66. Westervelt P., Gendelman H. E., Ratner H. E. 1991; Identification of a determinant with the human immunodeficiency virus surface envelope glycoprotein critical for productive infection of primary monocytes. Proceedings of the National Academy of Sciences, USA 88:3097–3101
    [Google Scholar]
  67. Winship P. R. 1989; An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Research 17:1266
    [Google Scholar]
  68. Zhang L. Q., Mackenzie P., Cleland A., Holmes E. C., Brown A. J. L., Simmonds P. 1993; Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. Journal of Virology 67:3345–3356
    [Google Scholar]
  69. Zhou L.-J., Tedder T. F. 1995; A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86:3295–3301
    [Google Scholar]
  70. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. 1993; Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-2-247
Loading
/content/journal/jgv/10.1099/0022-1317-79-2-247
Loading

Data & Media loading...

Most cited Most Cited RSS feed