1887

Abstract

RNA viruses evolve as complex distributions of mutants termed viral quasispecies. For this reason it is relevant to explore those environmental parameters that favour the selective advantage of some viral subpopulations over others. In the present study we provide direct evidence that the relative fitness of two competing viral subpopulations may depend on the multiplicity of infection (m.o.i.). Two closely related subpopulations of foot-and-mouth disease virus (FMDV) of serotype C, which differed in their history of cytolytic passages in BHK-21 cells, were subjected to growth-competition experiments in BHK-21 cells. One of the populations, termed S, was found to have a selective advantage over the other population, termed L, only when the competition passages were carried out at low m.o.i. In contrast, both populations, L and S, coexisted during serial passages carried out at high m.o.i. No differences between S and L were detected in assays of inhibition of infectivity by synthetic peptides, in cell binding-competition experiments, or in virulence for BHK-21 cells. However, FMDV S displayed increased heparin binding compared with L, and L higher virulence for Chinese hamster ovary (CHO) cells than S. These results with FMDV suggest that small differences in the interaction of the virus with the host cell may contribute to an m.o.i.-dependent selective advantage of one viral subpopulation over a closely related subpopulation. Therefore, different viral mutants from quasispecies replicating may be selected depending on the number of variant viruses relative to the number of susceptible cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-12-2971
1998-12-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/12/9880011.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-12-2971&mimeType=html&fmt=ahah

References

  1. Back N. K. T., Nijhuis M., Keulen W., Boucher C. A. B., Oude Essink B. B., van Kuilenburg A. B. P., van Gennip A. H., Berkhout B. 1996; Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO Journal 15:4040–4049
    [Google Scholar]
  2. Baranowski E., Sevilla N., Verdaguer N., Ruiz-Jarabo C. M., Beck E., Domingo E. 1998; Multiple virulence determinants of foot-and-mouth disease virus in cell culture. Journal of Virology 72:6362–6372
    [Google Scholar]
  3. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. Journal of Virology 69:2664–2666
    [Google Scholar]
  4. Byrnes A. P., Griffin D. E. 1998; Binding of Sindbis virus to cell surface heparan sulfate. Journal of Virology 72:7349–7356
    [Google Scholar]
  5. Carreño C., Roig X., Cairó J., Camarero J., Mateu M. G., Domingo E., Giralt E., Andreu D. 1992; Studies on the antigenic variability of C strains of foot-and-mouth disease virus by means of synthetic peptides and monoclonal antibodies. International Journal of Peptide Protein Research 39:41–47
    [Google Scholar]
  6. Casadevall A. 1996; Crisis in infectious disease: time for a new paradigm?. Clinical Infectious Diseases 23:790–794
    [Google Scholar]
  7. Chao L. 1990; Fitness of RNA virus decreased by Muller’s ratchet. Nature 348:454–455
    [Google Scholar]
  8. Charpentier N., Dávila M., Domingo E., Escarmís C. 1996; Long term, large population passage of aphthovirus can generate and amplify defective non-interfering particles in the leader protease gene. Virology 223:10–18
    [Google Scholar]
  9. Clarke D. K., Duarte E. A., Moya A., Elena S. F., Domingo E., Holland J. J. 1993; Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. Journal of Virology 67:222–228
    [Google Scholar]
  10. Clarke D. K., Duarte E. A., Elena S., Moya A., Domingo E., Holland J. J. 1994; The Red Queen reigns in the kingdom of RNA viruses. Proceedings of the National Academy of Sciences, USA 91:4821–4824
    [Google Scholar]
  11. de la Torre J. C., Dávila M., Sobrino F., Ortín J., Domingo E. 1985; Establishment of cell lines persistently infected with foot-and-mouth disease virus. Virology 145:24–35
    [Google Scholar]
  12. de la Torre J. C., Martinez-Salas E., Díez J., Villaverde A., Gebauer F., Rocha E., Dávila M., Domingo E. 1988; Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. Journal of Virology 62:2050–2058
    [Google Scholar]
  13. Díez J., Dávila M., Escarmís C., Mateu M. G., Domínguez J., Pérez J. J., Giralt E., Melero J. A., Domingo E. 1990; Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. Journal of Virology 64:5519–5528
    [Google Scholar]
  14. Domingo E., Holland J. J. 1997; RNA virus mutations and fitness for survival. Annual Review of Microbiology 51:151–178
    [Google Scholar]
  15. Domingo E., Sabo D. L., Taniguchi T., Weissmann C. 1978; Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744
    [Google Scholar]
  16. Domingo E., Holland J. J., Biebricher C., Eigen M. 1995; Quasispecies: the concept and the word. In Molecular Basis of Virus Evolution pp. 171–180 Gibbs A., Calisher C., Garcia-Arenal F. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Domingo E., Menéndez-Arias L., Holland J. J. 1997a; RNA virus fitness. Reviews in Medical Virology 7:87–96
    [Google Scholar]
  18. Domingo E., Menéndez-Arias L., Quiñones-Mateu M. E., Holguín A., Gutierrez-Rivas M., Martinez M. A., Quer J., Novella I. S., Holland J. J. 1997b; Viral quasispecies and the problem of vaccine-escape and drug-resistant mutants. Progress in Drug Research 48:99–128
    [Google Scholar]
  19. Duarte E., Clarke D., Moya A., Domingo E., Holland J. J. 1992; Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proceedings of the National Academy of Sciences, USA 89:6015–6019
    [Google Scholar]
  20. Duarte E. A., Novella I. S., Weaver S. C., Domingo E., Wain-Hobson S., Clarke D. K., Moya A., Elena S. F., de la Torre J. C., Holland J. J. 1994; RNA virus quasispecies : significance for viral disease and epidemiology. Infectious Agents and Disease 3:201–214
    [Google Scholar]
  21. Eigen M., Biebricher C. 1988; Sequence space and quasispecies distribution. In RNA Genetics 3 pp. 211–245 Domingo E., Holland J. J., Alhquist P. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  22. Eigen M., Schuster P. 1979 The Hypercycle. A Principle of Natural Self-organization Berlin: Springer;
    [Google Scholar]
  23. Elena S. F., Miralles R., Moya A. 1997; Frequency-dependent selection in a mammalian RNA virus. Evolution 51:984–987
    [Google Scholar]
  24. Escarmís C., Dávila M., Charpentier N., Bracho A., Moya A., Domingo E. 1996; Genetic lesions associated with Muller’s ratchet in an RNA virus. Journal of Molecular Biology 264:255–267
    [Google Scholar]
  25. Esko J. D., Stewart T. E., Taylor W. H. 1985; Animal cell mutants defective in glycosaminoglycans biosynthesis. Proceedings of the National Academy of Sciences, USA 82:3197–3201
    [Google Scholar]
  26. Fox G., Parry N., Barnett P. V., McGinn B., Rowlands D. J., Brown F. 1989; The cell attachment site of foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70:625–637
    [Google Scholar]
  27. Hernández J., Valero M. L., Andreu D., Domingo E., Mateu M. G. 1996; Antibody and host cell recognition of foot-and-mouth disease virus (serotype C) cleaved at the Arg-Gly-Asp (RGD) motif: a structural interpretation. Journal of General Virology 77:257–264
    [Google Scholar]
  28. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. 1991; Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. Journal of Virology 65:2960–2967
    [Google Scholar]
  29. Holland J. J., de la Torre J. C., Steinhauer D. 1992; RNA virus populations as quasispecies. Current Topics in Microbiology and Im-munology 176:1–20
    [Google Scholar]
  30. Jackson T., Ellard F. M., Abu Ghazaleh R., Brookes S. M., Blakemore W. E., Croteyn A. H., Stuart D. I., Newman J. W. I., King A. M. Q. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. Journal of Virology 70:5282–5287
    [Google Scholar]
  31. Jackson T., Sharma A., AbuGhazaleh R., Blakemore W. E., Ellard F. M., Simmons D. F. L., Newman J. W. I., Stuart D. I., King A. M. Q. 1997; Arginine-glycine-aspartic acid binding by foot-and-mouth disease viruses to the purified integrin αvβ3 in vitro. Journal of Virology 71:8357–8361
    [Google Scholar]
  32. Lewontin R. C. 1974 The Genetic Basis of Evolutionary Change New York: Columbia University Press;
    [Google Scholar]
  33. Lidholt K., Weinke J. L., Kiser C. S., Lygemwa F. N., Bame K. J., Cheifetz S., Massagué J., Lindahl U., Esko J. D. 1992; A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyl- transferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proceedings of the National Academy of Sciences, USA 89:2267–2271
    [Google Scholar]
  34. McMichael A. J., Phillips R. E. 1997; Escape of human immunodeficiency virus from immune control. Annual Review of Immunology 15:271–296
    [Google Scholar]
  35. Martinez M. A., Carrillo C., González-Candelas F., Moya A., Domingo E., Sobrino F. 1991; Fitness alteration of foot-and-mouth disease virus mutants : measurement of adaptability of viral quasispecies. Journal of Virology 65:3954–3957
    [Google Scholar]
  36. Mason P. W., Rieder E., Baxt B. 1994; RGD sequence of foot-and- mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proceedings of the National Academy of Sciences, USA 91:1932–1936
    [Google Scholar]
  37. Mateu M. G. 1995; Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Research 38:1–24
    [Google Scholar]
  38. Mateu M. G., Valero M. L., Andreu D., Domingo E. 1996; Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus: effect on cell recognition. Journal of Biological Chemistry 271:12814–12819
    [Google Scholar]
  39. Neff S., Sá-Carvalho D., Rieder E., Mason P. W., Blystone S. D., Brown E. J., Baxt B. 1998; Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. Journal of Virology 72:3587–3594
    [Google Scholar]
  40. Novella I. S., Clarke D. K., Quer J., Duarte E. A., Lee C. H., Weaver S. C., Elena S. F., Moya A., Domingo E., Holland J. J. 1995a; Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells. Journal of Virology 69:6805–6809
    [Google Scholar]
  41. Novella I. S., Duarte E. A., Elena S. F., Moya A., Domingo E., Holland J. J. 1995b; Exponential increases of RNA virus fitness during large population transmissions. Proceedings of the National Academy of Sciences, USA 92:5841–5844
    [Google Scholar]
  42. Putnak J. R., Kanesa-Thasan N. N., Innis B. L. 1997; A putative cellular receptor for dengue viruses. Nature Medicine 3:828–829
    [Google Scholar]
  43. Reznick D., Travis J. 1996; The empirical study of adaptation in natural populations. In Adaptation pp. 243–289 Rose M. R., Lauder G. V. Edited by San Diego: Academic Press;
    [Google Scholar]
  44. Sa-Carvalho D., Rieder E., Baxt B., Rodarte R., Tanuri A., Mason P. 1997; Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. Journal of Virology 71:5115–5123
    [Google Scholar]
  45. Sevilla N., Domingo E. 1996; Evolution of a persistent aphthovirus in cytolytic infections : partial reversion of phenotypic traits accompanied by genetic diversification. Journal of Virology 70:6617–6624
    [Google Scholar]
  46. Sevilla N., Verdaguer N., Domingo E. 1996; Antigenically profound amino acid substitutions occur during large population passages of foot-and-mouth disease virus. Virology 225:400–405
    [Google Scholar]
  47. Sobrino F., Dávila M., Ortín J., Domingo E. 1983; Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128:310–318
    [Google Scholar]
  48. Spear P. G. 1993; Entry of alphaherpesviruses into cells. Seminars in Virology 4:167–180
    [Google Scholar]
  49. Verdaguer N., Mateu M. G., Andreu D., Giralt E., Domingo E., Fita I. 1995; Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO Journal 14:1690–1696
    [Google Scholar]
  50. Verdaguer N., Mateu M. G., Bravo J., Domingo E., Fita I. 1996; Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth disease virus. Journal of Molecular Biology 256:364–376
    [Google Scholar]
  51. Verdaguer N., Fita I., Domingo E., Mateu M. G. 1997; Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding. Journal of Virology 71:9813–9816
    [Google Scholar]
  52. Verdaguer N., Sevilla N., Valero M. L., Stuart D., Brocchi E., Andreu D., Giralt E., Domingo E., Mateu M. G., Fita I. 1998; A similar pattern of interaction for different antibodies with a major antigenic site of foot-and-mouth disease virus : implications for intratypic antigenic variation. Journal of Virology 72:739–748
    [Google Scholar]
  53. Williams G. C. 1992 Natural Selection. Domains, Levels and Challenges Oxford: Oxford University Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-12-2971
Loading
/content/journal/jgv/10.1099/0022-1317-79-12-2971
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error