1887

Abstract

Novel H1N2 influenza A viruses which were first detected in pigs in Great Britain in 1994 were examined antigenicallyand genetically to determine their origins and establish the potential mechanisms for genetic reassortment. The haemagglutinin (HA) of all swine H1N2 viruses examined was most closely related to, but clearly distinguishable both anti- genically and genetically from, the HA of human H1N1 viruses which circulated in the human population during the early 1980s. Phylogenetic analysis of the HA gene revealed that the swine H1N2 viruses formed a distinct branch on the human lineage and were probably introduced to pigs shortly after 1980. Following apparent transfer to pigs the HA gene underwent genetic variation resulting in the establishment and cocirculation of genetically and antigenically heterogeneous virus populations. Genetic analyses of the other RNA segments of all swine H1N2 viruses indicated that the neuraminidase gene was most closely related to those of early ‘human-like ’ swine H3N2 viruses, whilst the RNA segments encoding PB2, PB1, PA, NP, M and NS were related most closely to those of avian viruses, which have been circulating recently in pigs in Northern Europe. The potential mechanisms and probable progenitor strains for genetic reassortment are discussed, but we propose that the swine H1N2 viruses examined originated following multiple genetic reassortment, initially involving human H1N1 and ‘human-like ’ swine H3N2 viruses, followed by reassortment with ‘avian-like ’ swine H1N1 virus. These findings suggest multiple reassortment and replication of influenza viruses may occur in pigs many years before their detection as clinical entities.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-12-2947
1998-12-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/12/9880008.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-12-2947&mimeType=html&fmt=ahah

References

  1. Adeyefa C. A. O., Quayle K., McCauley J. W. 1994; A rapid method for the analysis of influenza virus genes: application to the reassortment of equine influenza virus genes. Virus Research 32:391–399
    [Google Scholar]
  2. Air G. M., Laver W. G. 1986; The molecular basis of antigenic variation in influenza virus. Advances in Virus Research 31:53–102
    [Google Scholar]
  3. Austin F. J., Kawaoka Y., Webster R. G. 1990; Molecular analysis of the haemagglutinin gene of an avian H1N1 influenza virus. Journal of General Virology 71:2471–2474
    [Google Scholar]
  4. Beare A. S., Webster R. G. 1991; Replication of avian influenza viruses in humans. Archives of Virology 119:37–42
    [Google Scholar]
  5. Beklemishev A. B., Blinov V. M., Vasilenko S. K., Golovin S. I., Karginov V. A. 1986; Primary structure of the full size DNA copy of the hemagglutinin gene of influenza virus A/Kiev/59/79 (H1N1). Bioorganicheskaia Khimiia 12:375–381
    [Google Scholar]
  6. Brown I. H., Manvell R. J., Alexander D. J., Chakraverty P., Hinshaw V. S., Webster R. G. 1993; Swine influenza outbreaks in England due to a new H1N1 virus. Veterinary Record 132:461–462
    [Google Scholar]
  7. Brown I. H., Chakraverty P., Harris P. A., Alexander D. J. 1995; Disease outbreaks in pigs in Great Britain due to an influenza A virus of H1N2 subtype. Veterinary Record 136:328–329
    [Google Scholar]
  8. Brown I. H., Hill M. L., Harris P. A., Alexander D. J., McCauley J. W. 1997a; Genetic characterisation of an influenza A virus of unusual subtype (H1N7) isolated from pigs in England. Archives of Virology 142:1045–1050
    [Google Scholar]
  9. Brown I. H., Ludwig S., Olsen C. W., Hannoun C., Scholtissek C., Hinshaw V. S., Harris P. A., McCauley J. W., Strong I., Alexander D. J. 1997b; Antig enic and genetic analyses of H1N1 influenza A viruses from European pigs. Journal of General Virology 78:553–562
    [Google Scholar]
  10. Campitelli L., Donatelli I., Foni E., Castrucci M. R., Fabiani C., Kawaoka Y., Krauss S., Webster R. G. 1997; Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology 232:310–318
    [Google Scholar]
  11. Castrucci M. R., Donatelli I., Sidoli L., Barigazzi G., Kawaoka Y., Webster R. G. 1993; Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193:503–506
    [Google Scholar]
  12. Castrucci M. R., Campitelli L., Ruggieri A., Barigazzi G., Sidoli L., Daniels R., Oxford J. S., Donatelli I. 1994; Antigenic and sequence analysis of H3 influenza virus haemagglutinins from pigs in Italy. Journal of General Virology 75:371–379
    [Google Scholar]
  13. Claas E. C. J., Kawaoka Y., De Jong J. C., Masurel N., Webster R. G. 1994; Infection of children with avian human reassortment influenza virus from pigs in Europe. Virology 204:453–457
    [Google Scholar]
  14. Concannon P., Cummings I. W., Salser W. A. 1984; Nucleotide sequence of the influenza virus A/USSR/90/77 hemagglutinin gene. Journal of Virology 49:276–278
    [Google Scholar]
  15. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368–378
    [Google Scholar]
  16. Felsenstein J. 1991; PHYLIP Manual. University Herbarium, University of California, Berkeley, California:
    [Google Scholar]
  17. Gething M. J., Bye J., Skehel J., Wakefield M. 1980; Cloning and DNA sequence of double-stranded copies of hemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature 287:301–306
    [Google Scholar]
  18. Gourreau J. M., Kaiser C., Valette M., Douglas A. R., Labie J., Aymard M. 1994; Isolation of two H1N2 influenza viruses from swine in France. Archives of Virology 135:365–382
    [Google Scholar]
  19. Guo Y. J., Xu X. Y., Cox N. J. 1992; Human influenza A (H1N2) viruses isolated from China. Journal of General Virology 73:383–387
    [Google Scholar]
  20. Inkster M. D., Hinshaw V. S., Schulze I. T. 1993; The haemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. Journal of Virology 67:7436–7443
    [Google Scholar]
  21. Ito T., Kida H., Kawaoka Y. 1996; Receptors of influenza A viruses. Implications for the role of pigs in the generation of pandemic human influenza viruses. In Options for the Control of Influenza III pp. 516–519 Brown L. E., Hampson A. W., Webster R. G. Edited by Amsterdam: Elsevier Science;
    [Google Scholar]
  22. Kanegae Y., Sugita S., Shortridge K. F., Yoshioka Y., Nerome K. 1994; Origin and evolutionary pathways of the H1 haemagglutinin gene of avian, swine and human influenza viruses: cocirculation of two distinct lineages of swine virus. Archives of Virology 134:17–28
    [Google Scholar]
  23. Katsuda K., Sato S., Shirahata T., Lindstrom S., Nerome R., Ishida M., Nerome K., Goto H. 1995; Antig enic and genetic characteristics of H1N1 human influenza virus isolated from pigs in Japan. Journal of General Virology 76:1247–1249
    [Google Scholar]
  24. Kawaoka Y., Krauss S., Webster R. G. 1989; Avian to human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of Virology 63:4603–4608
    [Google Scholar]
  25. Kida H., Ito T., Yasuda J., Shimizu Y., Itakura C., Shortridge K. F., Kawaoka Y., Webster R. G. 1994; Potential for transmission of avian influenza viruses to pigs. Journal of General Virology 75:2183–2188
    [Google Scholar]
  26. Kundin W. D. 1970; Hong Kong A2 influenza virus infection among swine during a human epidemic in Taiwan. Nature 228:857
    [Google Scholar]
  27. Ludwig S., Haustein A., Kaleta E. F., Scholtissek C. 1994; Recent influenza A (H1N1) infections of pigs and turkeys in Northern Europe. Virology 202:281–286
    [Google Scholar]
  28. Luoh S. M., McGregor M. W., Hinshaw V. S. 1992; Haemagglutinin mutations related to antigenic variation in H1 swine influenza viruses. Journal of Virology 66:1066–1073
    [Google Scholar]
  29. Naeve C. W., Hinshaw V. S., Webster R. G. 1984; Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. Journal of Virology 51:567–569
    [Google Scholar]
  30. Neumeier E., Meier-Ewert H. 1992; Nucleotide sequence analysis of the HA1 coding portion of the haemagglutinin gene of swine H1N1 influenza viruses. Virus Research 23:107–117
    [Google Scholar]
  31. Ouchi A., Nerome K., Kanegae Y., Ishida M., Nerome R., Hayashi K., Hashimoto T., Kaji M., Kaji Y., Inaba Y. 1996; Large outbreak of swine influenza in southern Japan caused by reassortant (H1N2) influenza viruses : its epizootic background and characterization of the causative viruses. Journal of General Virology 77:1751–1759
    [Google Scholar]
  32. Pyhala R., Ikonen N., Forsten T., Alanko S., Kinnunen L. 1995; Evolution of the HA1 domain of human influenza A (H1N1) virus : loss of glycosylation sites and occurrence of herald and conserved strains. Journal of General Virology 76:205–210
    [Google Scholar]
  33. Raymond F. L., Caton A. J., Cox N. J., Kendal A. P., Brownlee G. 1986; The antigenicity and evolution of influenza H1 hemagglutinin, from 1950-1957 and 1977-1983: two pathways from one gene. Virology 148:275–287
    [Google Scholar]
  34. Robertson J. S. 1987; Sequence analysis of the haemagglutinin of A/Taiwan/1/86, a new variant of human influenza A (H1N1). Journal of General Virology 68:1205–1208
    [Google Scholar]
  35. Rocha E. P., Xu X., Hall H. E., Allen J. R., Regnery H. L., Cox N. J. 1993; Comparison of 10 influenza A (H1N1 and H3N2) haemagglutinin sequences obtained directly from clinical specimens to those of MDCK cell- and egg-grown viruses. Journal of General Virology 74:2513–2518
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  37. Scholtissek C., Rohde W., Von Hoyningen V., Rott R. 1978; On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87:13–20
    [Google Scholar]
  38. Schultz U., Fitch W. M., Ludwig S., Mandler J., Scholtissek C. 1991; Evolution of pig influenza viruses. Virology 183:61–73
    [Google Scholar]
  39. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. 1984; A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences, USA 81:1779–1783
    [Google Scholar]
  40. Smeenk C. A., Brown E. G. 1994; The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth. Journal of Virology 68:530–534
    [Google Scholar]
  41. Sugimura T., Yonemochi H., Ogawa T., Tanaka Y., Kumagai T. 1980; Isolation of a recombinant influenza virus (Hsw1N2) from swine in Japan. Archives of Virology 66:271–274
    [Google Scholar]
  42. Sugita S., Yoshioka Y., Itamura S., Kanegae Y., Oguchi K., Gojobori T., Nerome K., Oya A. 1991; Molecular evolution of hemagglutinin genes of H1N1 swine and human influenza A viruses. Journal of Molecular Evolution 32:16–23
    [Google Scholar]
  43. Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. 1997; Initial genetic characterization of the 1918 ‘Spanish’ influenza virus. Science 275:1793–1796
    [Google Scholar]
  44. Webster R. G., Laver W. G. 1972; Studies on the origin of pandemic influenza. 1. Antigenic analysis of A2 influenza viruses isolated before and after the appearance of Hong Kong influenza using antisera to the isolated hemagglutinin subunits. Virology 48:433–444
    [Google Scholar]
  45. Webster R. G., Sharp G. B., Claas E. C. J. 1995; Interspecies transmission of influenza viruses. American Journal of Respiratory and Critical Care Medicine 152:S25–S30
    [Google Scholar]
  46. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. 1988; Structure of the influenza virus haemagglutinin with its receptor, sialic acid. Nature 333:426–431
    [Google Scholar]
  47. Wiley D. C., Skehel J. J. 1987; The structure and function of the haemagglutinin membrane glycoprotein of influenza virus. Annual Reviews of Biochemistry 56:365–394
    [Google Scholar]
  48. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378
    [Google Scholar]
  49. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373
    [Google Scholar]
  50. Winter G., Fields S., Brownlee G. C. 1981; Nucleotide sequence of the haemagglutinin gene of a human influenza virus H1 subtype. Nature 292:72–75
    [Google Scholar]
  51. Wood G. W., Banks J., McCauley J. W., Alexander D. J. 1994; Deduced amino acid sequences of the haemagglutinin of H5N1 avian influenza virus isolates from an outbreak in turkeys in Norfolk, England. Archives of Virology 134:185–194
    [Google Scholar]
  52. Xu X., Rocha E. P., Regenery H. L., Kendal A. P., Cox N. J. 1993; Genetic and antigenic analyses of influenza A (H1N1) viruses, 1986-1991. Virus Research 28:37–55
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-79-12-2947
Loading
/content/journal/jgv/10.1099/0022-1317-79-12-2947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error