1887

Abstract

Feline immunodeficiency virus (FIV) is more readily isolated from CD8 T cell-depleted peripheral blood mononuclear cells (PBMC) of FIV-infected cats than from unfractionated PBMC cultures. However, it is not known whether feline CD8 T cells down- regulate FIV expression by direct interaction with FIV-infected cells or via a soluble mediator. Furthermore, it is not known whether this anti-FIV activity involves a lytic or non-lytic mechanism. In the present study, we demonstrated that autologous and allogeneic CD8 T cells from asympto-matic FIV-infected cats inhibited the replication of FIV in CD8 T cell-depleted PBMC cultures in a dose-dependent manner. The inhibitory effect was mediated by a non-lytic mechanism, and was not dependent on direct cell-to-cell contact: an inhibitory effect was exerted by CD8 T cells across a semi-permeable membrane, and an inhibitory activity was also present in cell-free supernatants from CD8 T cells. These results suggest that this suppressive effect is mediated, at least in part, by soluble factors produced by CD8 T cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-11-2729
1998-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/11/9820148.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-11-2729&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. 1996; CC CKR5: a RANTES, MIP-1 α and MIP-1 β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958
    [Google Scholar]
  2. Baier M., Wermer A., Bannet N., Metzner K., Kurth R. 1995; HIV suppression by interleukin-16. Nature 378:563
    [Google Scholar]
  3. Biswas P., Poli G., Kinter A. L., Justement J. S., Stanley S. K., Maury W. J., Bressler P., Orenstein J. M., Fauci A. S. 1992; Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells. Journal of Experimental Medicine 176:739–750
    [Google Scholar]
  4. Brinchmann J. E., Gaudernack G., Vardal F. 1990; CD8+ T cells inhibit HIV replication in naturally infected CD4+ cells. Evidence for a soluble inhibitor. Journal of Immunology 144:2961–2966
    [Google Scholar]
  5. Chen C. H., Weinhold K. J., Bartlett J. A., Bolognesi D. P., Greenberg M. 1993; CD8+ T lymphocyte-mediated inhibition of HIV-1 long terminal repeat transcription: a novel antiviral mechanism. AIDS Research and Human Retroviruses 9:1079–1086
    [Google Scholar]
  6. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., McKay C. R., LaRosa G., Newman W., Gerard N., Gerard C., Sodroski J. 1996; The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148
    [Google Scholar]
  7. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. 1995; Identification of RANTES, MIP-1 α, and MIP-1 β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815
    [Google Scholar]
  8. Deng H.-K., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Marzio P. D., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of the major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  9. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158
    [Google Scholar]
  10. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673
    [Google Scholar]
  11. English R. V., Nelson P., Johnson C. M., Nasisse M., Tompkins W. A., Tompkins M. B. 1994; Development of clinical disease in cats experimentally infected with feline immunodeficiency virus. Journal of Infectious Diseases 170:543–552
    [Google Scholar]
  12. Fauci A. S. 1993; Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 262:1011–1018
    [Google Scholar]
  13. Fauci A. S. 1996; Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534
    [Google Scholar]
  14. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  15. Gomez A. M., Smaill F. M., Rosenthal K. L. 1994; Inhibition of HIV replication by CD8+ T cells correlates with CD4 counts and clinical stage of disease. Clinical and Experimental Immunology 97:68–75
    [Google Scholar]
  16. Greenberg M. L., Lacey S. F., Chen C. H., Bolognesi D. P., Weinhold K. J. 1997; Noncytolytic CD8 T cell-mediated suppression of HIV replication. Springer Seminars in Immunopathology 18:355–369
    [Google Scholar]
  17. Hosie M. J., Broere N., Hesselgesser J., Turner J. D., Hoxie J. A., Neil J. C., Willett B. J. 1998; Modulation of feline immunodeficiency virus infection by stromal cell-derived factor. Journal of Virology 72:2097–2104
    [Google Scholar]
  18. Jeng C. R., English R. V., Childers T., Tompkins M. B., Tompkins W. A. F. 1996; Evidence for CD8+ antiviral activity in cats infected with feline immunodeficiency virus. Journal of Virology 70:2474–2480
    [Google Scholar]
  19. Kohmoto M., Uetsuka K., Ikeda Y., Inoshima Y., Shimojima M., Sato E., Inada G., Toyosaki T., Miyazawa T., Doi K., Mikami T. 1998; Eight-year observation and comparative study of specific pathogen-free cats experimentally infected with feline immunodeficiency virus (FIV) subtypes A and B: terminal acquired immunodeficiency syndrome in a cat infected with FIV Petaluma strain. Journal of Veterinary Medical Science 60:315–321
    [Google Scholar]
  20. Landay A. L., Mackewicz C. E., Levy J. A. 1993; An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status. Clinical Immunology and Immunopathology 69:106–116
    [Google Scholar]
  21. Levy J. A., Mackewicz C. E., Barker E. 1996; Controlling HIV pathogenesis : the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunology Today 17:217–224
    [Google Scholar]
  22. Mackewicz C., Levy J. A. 1992; CD8+ cell anti-HIV activity: nonlytic suppression of virus replication. AIDS Research and Human Retroviruses 6:1039–1050
    [Google Scholar]
  23. Mackewicz C. E., Ortega H. W., Levy J. A. 1991; CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. Journal of Clinical Investigation 87:1462–1466
    [Google Scholar]
  24. Mackewicz C. E., Ortega H., Levy J. A. 1994; Effect of cytokines on HIV replication in CD4+ lymphocytes : lack of identity with the CD8+ cell antiviral factor. Cellular Immunology 153:329–343
    [Google Scholar]
  25. Mackewicz C. E., Blackbourn D. J., Levy J. A. 1995; CD8+ T cells suppress human immunodeficiency virus replication by inhibiting viral transcription. Proceedings of the National Academy of Sciences, USA 92:2308–2312
    [Google Scholar]
  26. Montaner L. J., Doyle A. G., Collin M., Herbein G., Illei P., James W., Minty A., Caput D., Ferrara P., Gordon S. 1993; Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro. Journal of Experimental Medicine 178:743–747
    [Google Scholar]
  27. Moriuchi H., Moriuchi M., Combadiere C., Murphy P. M., Fauci A. S. 1996; CD8+ T-cell-derived soluble factor(s), but not β-chemokines RANTES, MIP-1 a, and MIP-1 α, suppress HIV-1 replication in monocyte/macrophages. Proceedings of the National Academy of Sciences, USA 93:15341–15345
    [Google Scholar]
  28. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. 1987; Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793
    [Google Scholar]
  29. Poli G., Fauci A. S. 1992; The role of monocyte/macrophages and cytokines in the pathogenesis of HIV infection. Pathobiology 60:246–251
    [Google Scholar]
  30. Poli G., Fauci A. S. 1993; Cytokine modulation of HIV expression. Seminars in Immunology 5:165–173
    [Google Scholar]
  31. Rubbert A., Weissman D., Combadiere C., Pettrone K. A., Daucher J. A., Murphy P. M., Fauci A. S. 1997; Multifactorial nature of noncytolytic CD8+ T cell-mediated suppression of HIV replication: β-chemokine-dependent and -independent effects. AIDS Research and Human Retroviruses 13:63–69
    [Google Scholar]
  32. Walker C. M., Levy J. A. 1989; A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology 66:628–630
    [Google Scholar]
  33. Walker B. D., Plata F. 1990; Cytotoxic T lymphocytes against HIV. Journal of Acquired Immune Deficiency Syndromes 4:177–184
    [Google Scholar]
  34. Walker C. M., Moody J. M., Stites D. P., Levy J. 1986; CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234:1563–1566
    [Google Scholar]
  35. Walker C. M., Erickson A. L., Hsueh F. C., Levy J. A. 1991a; Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a non-cytotoxic mechanism. Journal of Virology 65:5921–5927
    [Google Scholar]
  36. Walker C. M., Thomson-Honnebier G. A., Hsueh F. C., Erickson A. L., Pan L., Levy J. A. 1991b; CD8+ cells from HIV-1 infected individuals inhibit acute infection by human and primate immunodeficiency viruses. Cellular Immunology 137:420–428
    [Google Scholar]
  37. Weissman D., Poli G., Fauci A. S. 1994; Interleukin 10 blocks HIV replication in macrophages by inhibiting the autocrine loop of tumor necrosis factor alpha and interleukin 6 induction of virus. AIDS Research and Human Retroviruses 10:1199–1206
    [Google Scholar]
  38. Willett B. J., Picard L., Hosie M. J., Turner J. D., Adema K., Clapham P. R. 1997; Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. Journal of Virology 71:6407–6415
    [Google Scholar]
  39. Yamamoto J. K., Sparger E., Ho E. W., Andersen P. R., O’Connor T. P., Mandell C. P., Lowenstine L., Munn R., Pedersen N. C. 1988; Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. American Journal of Veterinary Research 49:1246–1258
    [Google Scholar]
  40. Zhou P., Goldstein S., Devadas K., Tewari D., Notkins A. L. 1997; Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nature Medicine 3:659–664
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-11-2729
Loading
/content/journal/jgv/10.1099/0022-1317-79-11-2729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error