1887

Abstract

We have previously shown that a number of isoforms of the non-structural rotavirus protein NSP5 are found in virus-infected cells. These isoforms differ in their level of phosphorylation which, at least in part, appears to occur through autophosphorylation. NSP5 co-localizes with another non-structural protein, NSP2, in the viroplasms of infected cells where virus replication takes place. We now show that NSP5 can be chemically cross-linked in living cells with the viral polymerase VP1 and NSP2. Interaction of NSP5 with NSP2 was also demonstrated by co- immunoprecipitation of NSP2 and NSP5 from extracts of UV-treated rotavirus-infected cells. In addition, in transient transfection assays, NSP5 phosphorylation was enhanced by coexpression of NSP2. An NSP5 C-terminal domain deletion mutant, was completely unable to be phosphorylated either in the presence or absence of NSP2. However, a 33 aa N-terminal deletion mutant of NSP5 was shown to become hyperphosphoryl- ated and to be insensitive to NSP2 activation, suggesting a regulatory role for this domain in NSP5 phosphorylation and making it a candidate for the interaction with NSP2. These mutants also allow a preliminary mapping of NSP5 autophosphorylation activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-11-2679
1998-11-01
2022-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/11/9820143.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-11-2679&mimeType=html&fmt=ahah

References

  1. Afrikanova I., Miozzo M. C., Giambiagi S., Burrone O. R. 1996; Phosphorylation generates different forms of rotavirus NSP5. Journal of General Virology 77:2059–2065
    [Google Scholar]
  2. Aponte C., Poncet D., Cohen J. 1996; Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody against NSP2. Journal of Virology 70:985–991
    [Google Scholar]
  3. Blackhall J., Fuentes A., Hansen K., Magnusson G. 1997; Serine protein kinase activity associated with rotavirus phosphoprotein NSP5. Journal of Virology 71:138–144
    [Google Scholar]
  4. Budowsky E. I., Abdurashidova G. G. 1989; Polynucleotide-protein cross-links induced by ultraviolet light and their use for structural investigation of nucleoproteins. Progress in Nucleic Acid Research and Molecular Biology 37:1–65
    [Google Scholar]
  5. Chang T. L., Reiss C. S., Huang A. S. 1994; Inhibition of vesicular stomatitis virus RNA synthesis by protein hyperphosphorylation. Journal of Virology 68:4980–4987
    [Google Scholar]
  6. Chen D., Gombold J. L., Ramig R. F. 1990; Intracellular RNA synthesis directed by temperature-sensitive mutants of simian rotavirus SA11. Virology 178:143–151
    [Google Scholar]
  7. Chen D., Zeng C. Q. Y., Wentz M. J., Gorziglia M., Estes M. K., Ramig R. F. 1994; Template dependent, in vitro replication of rotavirus RNA. Journal of Virology 68:7030–7039
    [Google Scholar]
  8. Cooper J. A., Howell B. 1993; The when and how of Src regulation. Cell 73:1051–1054
    [Google Scholar]
  9. Estes M. K., Graham D. Y., Gerba C. P., Smith E. M. 1979; Simian rotavirus SA11 replication in cell cultures. Journal of Virology 31:810–815
    [Google Scholar]
  10. Fuerst R. T., Niles G. E., Studier W. F., Moss B. 1986; Eucaryotic transient-expression system based on recombinant vaccinia virus that synthesized bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  11. Gallegos C. O., Patton J. T. 1989; Characterization of rotavirus intermediates: a model for the assembly of single shelled particles. Virology 172:616–627
    [Google Scholar]
  12. Gianbiagi S., Rodriguez A. J., Gomez J., Burrone O. 1994; A rearranged genomic segment 11 is common to different human rotaviruses. Archives of Virology 136:415–421
    [Google Scholar]
  13. Gonzáles S. A., Burrone O. 1991; Rotavirus NS26 is modified by addition of single O-linked residues of N-acetylglucosamine. Virology 182:8–16
    [Google Scholar]
  14. Haltiwanger R. S., Kelly W. G., Roquemore E. P., Blomberg M. A., Dong L. Y., Kreppel L., Chou T. Y., Hart G. W. 1992; Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochemical Society Transactions 20:264–269
    [Google Scholar]
  15. Kann M., Lu X., Gerlich W. H. 1995; Recent studies on replication of hepatitis B virus. Journal of Hepatology 22:9–13
    [Google Scholar]
  16. Kapoor M., Zhang L., Ramachandra M., Kusukawa J., Ebner K. E., Padmanabhan R. 1995; Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. Journal of Biological Chemistry 270:19100–19106
    [Google Scholar]
  17. Kattoura M. D., Clapp L. L., Patton J. T. 1992; The rotavirus non structural protein NS35, possesses RNA-binding activity in vitro and in vivo . Virology 192:698–708
    [Google Scholar]
  18. Kattoura M. D., Chen X., Patton J. T. 1994; The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202:803–813
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  20. Lastarza M. W., Grakoui A., Rice C. M. 1994; Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus NSP3: effects on phosphorylation and on virus replication invertebrate and invertebrate cells. Virology 202:224–232
    [Google Scholar]
  21. Lawton J. A., Zeng C.Q.-Y., Mukherjee S. K., Cohen J., Estes M. K., Prasad B. V. V. 1997; Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. Journal of Virology 71:7353–7360
    [Google Scholar]
  22. Li E., Pedraza A., Bestagno M., Mancardi S., Sanchez R., Burrone O. 1997; Mammalian cell expression of dimeric small immune proteins (SIP). Protein Engineering 10:731–736
    [Google Scholar]
  23. Mattion N. M., Mitchell D. B., Both G. W., Estes M. K. 1991; Expression of rotavirus proteins encoded by alternative open reading frames of genome fragment 11. Virology 181:295–304
    [Google Scholar]
  24. Mattion N., Cohen J., Estes M. K. 1994; The rotavirus proteins. In Viral Infections of the Gastrointestinal Tract, 2nd edn. pp. 169–249 Kapikian A. Edited by New York: Marcel Dekker;
    [Google Scholar]
  25. Patton J. T. 1986; Synthesis of simian rotavirus SA11 doublestranded RNA in a cell free system. Virus Research 6:217–233
    [Google Scholar]
  26. Patton J. T., Gallegos C. O. 1988; Structure and protein composition of the rotavirus replicase particle. Virology 166:358–365
    [Google Scholar]
  27. Patton J. T., Salter-Cid L., Kalbach A., Mansell E. A., Kattoura M. 1993; Nucleotide and amino acid sequence analysis of the rotavirus nonstructural RNA-binding protein NS35. Virology 192:438–446
    [Google Scholar]
  28. Patton J. T., Wentz M. J., Xiaobo J., Ramig R. F. 1996; Cis-acting signals that promote genome replication in rotavirus mRNA. Journal of Virology 70:3961–3971
    [Google Scholar]
  29. Patton J. T., Jones M. T., Kalbach A. N., He Y. W., Xiaobo J. 1997; Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. Journal of Virology 71:9618–9626
    [Google Scholar]
  30. Petrie B. L., Graham D. Y., Hanssen H., Estes M. K. 1982; Localization of rotavirus antigens in infected cells by ultrastructural immunocytochemistry. Journal of General Virology 63:457–467
    [Google Scholar]
  31. Petrie B. L., Greenberg H. B., Graham D. Y., Estes M. K. 1984; Ultrastructural localisation of rotavirus antigens using colloidal gold. Virus Research 1:133–152
    [Google Scholar]
  32. Poncet D., Lindenbaum P., L’Haridon R., Cohen J. 1997; In vivo an in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. Journal of Virology 71:34–41
    [Google Scholar]
  33. Prasad B. V. V., Rothnagel R., Zeng C. Q. Y., Jakana J., Lawton J. A., Chiu W., Estes M. K. 1996; Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473
    [Google Scholar]
  34. Raz E., Carson D. A., Parker S. E., Parr T. B., Abai A. M., Aichinger J., Gromkowski S. H., Singh M., Lew D., Yankauckas M. A., Baird S. M., Rhodes J. H. 1994; Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proceedings of the National Academy of Sciences, USA 81:9519–9523
    [Google Scholar]
  35. Superti-Furga G., Courtneidge S. A. 1995; Structure-function relationships in Src family and related protein tyrosine kinases. Bioassays 17:321–330
    [Google Scholar]
  36. Welch S. K., Crawford S. E., Estes M. K. 1989; Rotavirus SA11 genome segment 11 protein is a non-structural phosphoprotein. Journal of Virology 63:3974–3982
    [Google Scholar]
  37. Wentz M. J., Patton J. T., Ramig R. F. 1996; The 3′-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. Journal of Virology 70:7833–7841
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-11-2679
Loading
/content/journal/jgv/10.1099/0022-1317-79-11-2679
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error