1887

Abstract

The surface glycoprotein G is the major neutralizing and protective antigen of bovine ephemeral fever rhabdovirus (BEFV). Twelve neutralizing MAbs against BEFV strain BB7721 were used to select 33 neutralization escape mutants. The mutants had been classified previously into three major antigenic sites (G1-G3) based on their cross-neutralization patterns. The nucleotide sequence of the entire extracellular domain of the G protein gene was determined for all mutants. Each contained a single nucleotide change leading to a single amino acid substitution. The 16 mutants assigned to the linear antigenic site G1 mapped to aa 487-503 of the 623 aa G protein. Results of antibody binding to several overlapping octapeptides covering this region mapped the sequence of two common minimal B cell epitopes recognized by the five G1 MAbs to (488)EEDE(491) and (499)NPHE(502). Site G2 mutations mapped either at aa 169 or 187. The 12 mutants representing antigenic site G3 (G3a and G3b) mapped to aa 49, 57, 218, 229 and 265, indicating that this site is likely to combine complex discontinuous epitopes. Comparison of the deduced amino acid sequence from five BEFV field isolates and BB7721 identified aa 218 to be critical for the site G3a neutralization. Alignment of the glycoproteins of rabies virus, vesicular stomatitis Indiana virus, vesicular stomatitis New Jersey virus, infectious haematopoietic necrosis virus and BEFV revealed similarities in the location of the neutralizing epitopes and extensive conservation of cysteine residues, suggesting that basic elements of the folded structure of these glycoproteins are preserved.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-11-2573
1998-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/11/9820132.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-11-2573&mimeType=html&fmt=ahah

References

  1. Benmansour A., Leblois H., Coulon P., Tuffereau C., Gaudin Y., Flamand A., Lafay F. 1991; Antigenicity of rabies virus glycoprotein. Journal of Virology 65:4198–4203
    [Google Scholar]
  2. Cybinski D. H., Walker P. J., Byrne K. A., Zakrzewski H. 1990; Mapping of antigenic sites on the bovine ephemeral fever virus glycoprotein using monoclonal antibodies. Journal of General Virology 71:2065–2072
    [Google Scholar]
  3. Cybinski D. H., Davis S. S., Zakrzewski H. 1992; Antigenic variation of the bovine ephemeral fever virus glycoprotein. Archives of Virology 124:211–224
    [Google Scholar]
  4. Gaudin Y., Ruigrok R. W. H., Tuffereau C., Knossow M., Flamand A. 1992; Rabies virus glycoprotein is a trimer. Virology 187:627–632
    [Google Scholar]
  5. Getzoff E. D., Geysen H. M., Stuart J. R., Alexander H., Tainer J. A., Lerner R. A. 1987; Mechanisms of antibody binding to a protein. Science 235:1191–1196
    [Google Scholar]
  6. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, USA 81:3998–4002
    [Google Scholar]
  7. Grigera P. R., Mathieu M. E., Wagner R. B. 1991; Effect of glycosylation on the conformation epitopes of the glycoprotein of vesicular stomatitis virus (New Jersey serotype). Virology 180:1–9
    [Google Scholar]
  8. Hertig C., Pye A. D., Davis S. S., McWilliam S. M., Heine H. G., Walker P. J., Boyle D. B. 1996; Vaccinia virus-expressed bovine ephemeral fever virus G but not GNS glycoprotein induces neutralizing antibodies and protects against experimental infection. Journal of General Virology 77:631–640
    [Google Scholar]
  9. Huang C., Chien M.-S., Landolt M., Batts W., Winton J. 1996; Mapping the neutralizing epitopes on the glycoprotein of infectious haematopoietic necrosis virus, a fish rhabdovirus. Journal of General Virology 77:3033–3040
    [Google Scholar]
  10. Hutchinson E. G., Thornton J. M. 1994; A revised set of potentials for beta-turn formation in proteins. Protein Science 3:2207–2216
    [Google Scholar]
  11. Jin L., Fendly B. M., Wells J. A. 1992; High resolution analysis of antibody-antigen interactions. Journal ofMolecular Biology 226:851–865
    [Google Scholar]
  12. Luo L., Li Y., Snyder R. M., Wagner R. R. 1988; Point mutations in glycoprotein gene of vesicular stomatitis virus (New Jersey serotype) selected by resistance to neutralization by epitope-specific monoclonal antibodies. Virology 163:341–348
    [Google Scholar]
  13. Luo L., Li Y., Snyder R. M., Wagner R. R. 1990; Spontaneous mutations leading to antigenic variations in the glycoproteins of vesicular stomatitis virus field isolates. Virology 174:70–78
    [Google Scholar]
  14. McWilliam S. M., Kongsuwan K., Cowley J. A., Byrne K. A., Walker P. J. 1997; Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus. Journal of General Virology 78:1309–1317
    [Google Scholar]
  15. Prehaud C., Coulon P., Lafay F., Thiers C., Flamand A. 1988; Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. Journal of Virology 62:1–7
    [Google Scholar]
  16. Seif I., Coulon P., Rollin P. E., Flamand A. 1985; Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. Journal of Virology 53:926–934
    [Google Scholar]
  17. Speller S. A., Sanger D. V., Clarke B. E., Rowlands D. 1993; The nature and spatial distribution of amino acid substitutions conferring resistance to neutralizing monoclonal antibodies in human rhinovirus type 2. Journal of General Virology 74:193–200
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  19. Uren M. F., Walker P. J., Zakrzewski H., St George T. D., Byrne K. A. 1994; Effective vaccination of cattle using the virion G protein of bovine ephemeral fever rhabdovirus. Vaccine 12:845–850
    [Google Scholar]
  20. Vandepol S. B., Lefrancois L., Holland J. J. 1986; Sequence of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology 148:312–325
    [Google Scholar]
  21. Wang Y., Walker P. J. 1993; Adelaide River rhabdovirus expresses consecutive glycoprotein genes as polycistronic mRNA:new evidence of gene duplication as an evolutionary process. Virology 195:719–731
    [Google Scholar]
  22. Wang Y., McWilliam S. M., Cowley J. A., Walker P. J. 1994; Complex genome organization in the GNS-L intergenic region of Adelaide River rhabdovirus. Virology 203:63–72
    [Google Scholar]
  23. Walker P. J., Byrne K. A., Cybinski D. H., Doolan D. L., Wang Y. 1991; Proteins of bovine ephemeral fever virus. Journal of General Virology 72:67–74
    [Google Scholar]
  24. Walker P. J., Byrne K. A., Riding G. A., Cowley J. A., Wang Y., McWilliam S. 1992; The genome of bovine ephemeral fever rhabdovirus contains two related glycoprotein genes. Virology 191:49–61
    [Google Scholar]
  25. Wunner W. H., Calisher C. H., Dietzgen R. G., Jackson A. O., Kitajima E. W., Lafon M. F., Leong J. C., Nichol S. T., Peters D., Smith J. S., Walker P. J. 1995 Rhabdoviridae. In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp 288–293 Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Edited by Vienna & New York: Springer-Verlag;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-11-2573
Loading
/content/journal/jgv/10.1099/0022-1317-79-11-2573
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error