1887

Abstract

The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5′ ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequi-virus families. The 3′ ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the as previously thought, but belongs to a distinct and hitherto unrecognized virus family.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-1-191
1998-01-01
2022-05-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/1/9460942.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-1-191&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  2. Ansardi D. C., Porter D. C., Anderson M. J., Morrow C. D. 1996; Poliovirus assembly and encapsidation of genomic RNA. Advances in Virus Research 46:1–68
    [Google Scholar]
  3. Belsham G. J., Sonenberg N. 1996; RNA-protein interactions in regulation of picornavirus RNA translation. Microbiological Reviews 60:499–511
    [Google Scholar]
  4. Brun G., Plus N. 1980; The viruses of Drosophila. In The Genetics and Biology of Drosophila pp. 625–702 Ashburner M., Wright T. F. R. Edited by New York: Academic Press;
    [Google Scholar]
  5. Candresse T., Morch M. D., Dunez J. 1990; Multiple alignment and hierarchical clustering of conserved amino acid sequences in the replication-associated proteins of plant RNA viruses. Research in Virology 141:315–329
    [Google Scholar]
  6. Carrasco L. 1994; Picornavirus inhibitors. Pharmacology and Therapeutics 64:215–290
    [Google Scholar]
  7. Carter M. J., Milton I. D., Meanger J., Bennett M., Gaskell R. M., Turner P. C. 1992; The complete nucleotide sequence of a feline calicivirus. Virology 190:443–448
    [Google Scholar]
  8. Cavener D. R., Ray S. C. 1991; Eukaryotic start and stop translation sites. Nucleic Acids Research 19:3185
    [Google Scholar]
  9. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  10. Christian P. D. 1987 Studies on Drosophila C and A viruses in Australian populations of Drosophila melanogaster PhD thesis Australian National University:
    [Google Scholar]
  11. Christian P. D. 1992; A simple vacuum dot-blot hybridization assay for the detection of Drosophila A and C viruses in single Drosophila. Journal of Virological Methods 38:153–165
    [Google Scholar]
  12. Contamine D., Petitjean A.-M., Ashburner M. 1989; Genetic resistance to virus infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 123:525–533
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the Vax. Nucleic Acids Research 12:387–395
    [Google Scholar]
  14. Goldbach R., Haan P. 1994; RNA viral supergroups and the evolution of RNA viruses. In The Evolutionary Biology of Viruses pp. 105–119 Morse S. S. Edited by New York: Raven Press;
    [Google Scholar]
  15. Goldbach R., Wellink J. 1988; Evolution of plus-strand RNA viruses. Intervirology 29:260–267
    [Google Scholar]
  16. Greif C., Hemmer O., Fritsch C. 1988; Nucleotide sequence of tomato black ring virus. Journal of General Virology 69:1517–1529
    [Google Scholar]
  17. Ivanov P. A., Karpova O. V., Skulachev M. V., Tomashevskaya O. L., Rodionova N. P., Dorokhov Y. L., Atabekov J. G. 1997; A tobamovirus genome that contains an internal ribosome entry site functional in vitro. Virology 232:32–43
    [Google Scholar]
  18. Johnson K. N., Christian P. D. 1996; A molecular taxonomy for cricket paralysis virus including two new isolates from Australian populations of Drosophila (Diptera: Drosophilidae). Archives of Virology 141:1509–1522
    [Google Scholar]
  19. Jousset F. X., Plus N., Croizier G., Thomas M. 1972; Existence chez Drosophila de deux groupes de picornavirus de propriétés sérologiques et biologiques différentes. Comptes Rendus de l’Academie des Sciences (Paris) 275:3043–3046
    [Google Scholar]
  20. Jousset F., Bergoin M., Revet B. 1977; Characterization of the Drosophila C virus. Journal of General Virology 34:269–285
    [Google Scholar]
  21. King L. A., Moore N. F. 1988; Evidence for the presence of a genome-linked protein in two insect picornaviruses, cricket paralysis and Drosophila C viruses. FEMS Microbiology Letters 50:41–44
    [Google Scholar]
  22. King L. A., Pullin J. S. K., Moore N. F. 1984; Characterisation of a picornavirus isolated from a tumorous blood cell line of Drosophila melanogaster. Microbios Letters 26:121–127
    [Google Scholar]
  23. King L. A., Pullin J. S. K., Stanway G., Almond J. W., Moore N. F. 1987; Cloning of the genome of cricket paralysis virus : sequence of the 3′ end. Virus Research 6:331–344
    [Google Scholar]
  24. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses : Implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28:375–430
    [Google Scholar]
  25. Koonin E. V., Gorbalenya A. E. 1992; An insect picornavirus may have genome organization similar to that of caliciviruses. FEBS Letters 297:81–86
    [Google Scholar]
  26. Lomonossoff G. P., Shanks M. 1983; The nucleotide sequence of cowpea mosaic virus B RNA. EMBO Journal 2:2253–2258
    [Google Scholar]
  27. Moore N. F., Pullin J. S. K. 1983; Heat shock used in combination with amino acid analogues and protease inhibitors to demonstrate the processing of proteins of an insect picornavirus (Drosophila C virus) in Drosophila melanogaster cells. Annales de Virologie 134:285–292
    [Google Scholar]
  28. Moore N. F., Kearns A., Pullin J. S. K. 1980; Characterization of cricket paralysis virus-induced polypeptides. Journal of Virology 33:1–9
    [Google Scholar]
  29. Moore N. F., Reavy B., Pullin J. S. K., Plus N. 1981; The polypeptides induced in Drosophila cells by Drosophila C virus (strain Ouarzazate). Virology 112:411–416
    [Google Scholar]
  30. Moore N. F., Reavy B., King L. A. 1985; General characteristics, gene organization and expression of small RNA viruses of insects. Journal of General Virology 66:647–659
    [Google Scholar]
  31. Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D.editor 1995 Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses New York & Vienna: Springer-Verlag;
    [Google Scholar]
  32. Najarian R., Caput D., Gee W., Potter S. J., Renard A., Merryweather J., Nest G. V., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of the National Academy of Sciences, USA 82:2627–2631
    [Google Scholar]
  33. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325
    [Google Scholar]
  34. Plus N., Croizier G., Jousset F. X., David J. 1975; Picornaviruses of laboratory and wild Drosophila melanogaster: geographical distribution and serotypic composition. Annales de Microbiologie 126A:107–117
    [Google Scholar]
  35. Reavy B., Moore N. F. 1981a; Cell-free translation of cricket paralysis virus RNA: analysis of the synthesis and processing of virus-specified proteins. Journal of General Virology 55:429–438
    [Google Scholar]
  36. Reavy B., Moore N. F. 1981b; In vitro translation of cricket paralysis virus RNA. Archives of Virology 67:175–180
    [Google Scholar]
  37. Reavy B., Moore N. F. 1983a; Cell-free translation of Drosophila C virus RNA: identification of a virus protease activity involved in capsid protein synthesis and further studies on in vitro processing of cricket paralysis virus specified proteins. Archives of Virology 76:101–115
    [Google Scholar]
  38. Reavy B., Moore N. F. 1983b; The gene organization of a small RNA-containing insect virus : comparison with that of mammalian picornaviruses. Virology 131:551–554
    [Google Scholar]
  39. Reavy B., Moore N. F. 1983c; An inhibitor-resistant protease specified by an insect picornavirus, and the role of cellular proteases in the rapid processing of capsid protein precursors. Journal of General Virology 64:1831–1833
    [Google Scholar]
  40. Reavy B., Crump W. A. L., Moore N. F. 1983; Characterization of cricket paralysis virus and Drosophila C virus-induced RNA species synthesized in infected Drosophila melanogaster cells. Journal of Invertebrate Pathology 41:397–400
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  43. Scotti P. D. 1976; Cricket paralysis virus replicates in cultured Drosophila cells. Intervirology 6:333–342
    [Google Scholar]
  44. Scotti P. D., Longworth J. F., Plus N., Croizier G., Reinganum C. 1981; The biology and ecology of strains of an insect small RNA virus complex. Advances in Virus Research 26:117–143
    [Google Scholar]
  45. Shen P., Kaniewska M., Smith C., Beachy R. N. 1993; Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193:621–630
    [Google Scholar]
  46. Stanway G. 1990; Structure, function and evolution of picornaviruses. Journal of General Virology 71:2482–2501
    [Google Scholar]
  47. Thole V., Hull R. 1996; Rice tungro spherical virus : nucleotide sequence of the 3′ genomic half and studies on the two small 3′ open reading frames. Virus Genes 13:239–246
    [Google Scholar]
  48. Turnbull-Ross A. D., Reavy B., Mayo M. A., Murant A. F. 1992; The nucleotide sequence of parsnip yellow fleck virus: a plant picorna-like virus. Journal of General Virology 73:3203–3211
    [Google Scholar]
  49. Zanotto P. M. D., Gibbs M. J., Gould E. A., Holmes E. C. 1996; A reevaluation of the higher taxonomy of viruses based on RNA polymerases. Journal of Virology 70:6083–6096
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-1-191
Loading
/content/journal/jgv/10.1099/0022-1317-79-1-191
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error