1887

Abstract

Experimental infection of inbred strains of laboratory mice with murine herpesvirus 68 (MHV-68), a natural pathogen of wild rodents, results in acute productive infection of the lung followed by a latent infection of B lymphocytes. We have previously shown that MHV-68 encodes an open reading frame with similarity to poxvirus serpins, designated ORF1, and eight novel tRNA-like sequences. The latter are processed into mature, uncharged tRNAs and are abundantly expressed during both lytic and latent infection. In this study it is demonstrated that deletion of four of the tRNA-like sequences and ORF1 from the virus genome does not affect the ability of MHV-68 to replicate or to establish, and reactivate from, latency

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-1-149
1998-01-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/1/9460936.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-1-149&mimeType=html&fmt=ahah

References

  1. Blaskovic D., Stancekova M., Svobodova J., Mistrikova J. 1980; Isolation of five strains of herpesvirus from two species of free living small rodents. Acta Virologica 24:468
    [Google Scholar]
  2. Bowden R. J., Simas J. P., Davis A. J., Efstathiou S. 1997; Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. Journal of General Virology 78:1675–1687
    [Google Scholar]
  3. Efstathiou S., Ho Y. M., Minson A. C. 1990a; Cloning and molecular characterization of the murine herpesvirus 68 genome. Journal of General Virology 71:1355–1364
    [Google Scholar]
  4. Efstathiou S., Ho Y. M., Hall S., Styles C. J., Scott S. D., Gompels U. A. 1990b; Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. Journal of General Virology 71:1365–1372
    [Google Scholar]
  5. Forrester A., Farrell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T. 1992; Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. Journal of Virology 66:341–348
    [Google Scholar]
  6. Grassmann R., Fleckenstein B. 1989; Selectable recombinant herpesvirussaimiri is capable of persisting in a human T-cell line. Journal of Virology 63:1818–1821
    [Google Scholar]
  7. Kohler G., Milstein C. 1976; Derivation of specific antibody- producing tissue culture and tumour lines by fusion. European Journal of Immunology 6:511–519
    [Google Scholar]
  8. McGeoch D. J., Cook S., Dolan A., Jamieson F. E., Telford E. A. 1995; Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. Journal of Molecular Biology 247:443–458
    [Google Scholar]
  9. Mackett M., Stewart J. P., Pepper S. de V., Chee M., Efstathiou S., Nash A. A., Arrand J. R. 1997; Genetic content and preliminary transcription analysis of a representative region of murine gamma-herpesvirus 68. Journal of General Virology 78:1425–1433
    [Google Scholar]
  10. Murthy S. C., Trimble J. J., Desrosiers R. C. 1989; Deletion mutants of herpesvirussaimiri define an open reading frame necessary for transformation. Journal of Virology 63:3307–3314
    [Google Scholar]
  11. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  12. Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. 1992a; Virological and pathological features of mice infected with murine gammaherpesvirus 68. Journal of General Virology 73:2347–2356
    [Google Scholar]
  13. Sunil-Chandra N. P., Efstathiou S., Nash A. A. 1992b; Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo . Journal of General Virology 73:3275–3279
    [Google Scholar]
  14. Sunil-Chandra N. P., Efstathiou S., Nash A. A. 1993; Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology 193:825–833
    [Google Scholar]
  15. Swaminathan S., Tomkinson B., Kieff E. 1991; Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proceedings of the National Academy of Sciences, USA 88:1546–1550
    [Google Scholar]
  16. Twigg A. J., Sherratt D. 1980; Trans-complementable copy-number mutants of plasmid Col E1. Nature 283:216–218
    [Google Scholar]
  17. Usherwood E. J., Stewart J. P., Robertson K., Allen D. J., Nash A. A. 1996; Absence of splenic latency in murine gammaherpesvirus 68- infected B cell-deficient mice. Journal of General Virology 77:2819–2825
    [Google Scholar]
  18. Virgin H. W., Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. Journal of Virology 71:5894–5904
    [Google Scholar]
  19. Weck K. E., Barkon M. L., Yoo L. I., Speck S. H., Virgin H. W. 1996; Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. Journal of Virology 70:6775–6780
    [Google Scholar]
  20. Wilkinson G. W., Akrigg G. 1992; Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus. Nucleic Acids Research 20:2233–2239
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-1-149
Loading
/content/journal/jgv/10.1099/0022-1317-79-1-149
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error