Characterization of the proteinase specified by varicella-zoster virus gene 33 Free

Abstract

Varicella-zoster virus (VZV) genes 33 and 33·5 are predicted to encode the VZV proteinase and its substrate (theassembly protein) respectively. These genes were expressed in insect cells using recombinant baculovirus and it was confirmed that gene 33 encodes a proteinase capable of autoproteolytic processing at two positions. When VZV gene 33·5 was co-expressed with the VZV proteinase, processing of the VZV33·5 gene product was observed. A polyclonal antiserum to the VZV assembly protein domain highlighted a set of proteins in VZV infected HEL cells identical to those identified in insect cells expressing VZV genes 33 and 33·5. To facilitate further characterization of the VZV proteinase the enzyme was purified by affinity chromatography from an expression system and activity was observed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-9-2153
1997-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/9/9292001.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-9-2153&mimeType=html&fmt=ahah

References

  1. Baum E. Z., Bebernitz G. A., Hulmes J. D., Muzithras V. P., Jones T. R., Gluzman Y. 1993; Expression and analysis of the human cytomegalovirus UL80-encoded protease: identification of auto proteolytic sites. Journal of Virology 67:697–506
    [Google Scholar]
  2. Chen P., Tsuge H., Almassy R. J., Gribskov C. L., Katoh S., Vanderpool D. L., Margosiak S. A., Pinko C., Matthews D. A., Kan C. 1996; Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86:835–843
    [Google Scholar]
  3. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  4. Deckman I. C., Hagen M., McCann P. J. 1992; Herpes simplex virus type 1 protease expressed in Escherichia coli exhibits autoprocessing and specific cleavage of the ICP35 assembly protein. Journal of Virology 66:7362–7367
    [Google Scholar]
  5. Donaghy G., Jupp R. 1995; Characterization of the Epstein-Barr virus proteinase and comparison with the human cytomegalovirus proteinase. Journal of Virology 69:1265–1270
    [Google Scholar]
  6. Friedrichs W. E., Grose C. 1986; Varicella-zoster p32/p36 complex is present in both the viral capsid and the nuclear matrix of the infected cell. Journal of Virology 57:155–164
    [Google Scholar]
  7. Gao M., Matusick-Kumar L., Hurlburt W., Ditusa S. F., Newcomb W. W., Brown J. C., McCann P. J., Deckman I., Colonno R. J. 1994; The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. Journal of Virology 68:3702–3712
    [Google Scholar]
  8. Gibson W., Welch A. R., Hall M. R. T. 1994; Assemblin, a herpes virus serine maturational proteinase and new molecular target for antivirals. Perspectives in Drug Discovery and Design 2:413–426
    [Google Scholar]
  9. Harper D. R., Sanders E. A., Ashcroft M. A. 1995; Varicella-zoster virus assembly protein p32/p36 is present in DNA containing as well as immature capsids. Journal of Medical Virology 46:144–147
    [Google Scholar]
  10. Kadowaki H., Kadowaki T., Wondisford F. E., Taylor S. I. 1989; Use of polymerase chain reaction catalysed by Taq DNA polymerase for site-specific mutagenesis. Gene 17:723–733
    [Google Scholar]
  11. Liu F., Roizman B. 1993; Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. Journal of Virology 67:1300–1309
    [Google Scholar]
  12. Overton H. A., McMillan D. J., Klavinskis L. S., Hope L., Ritchie A. J., Wong-Kai-In P. 1992; Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology 190:184–192
    [Google Scholar]
  13. Preston V. G., Coates J. A. V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  14. Qiu X., Culp J. S., Dilella A. G., Hellmig B., Hoog S. S., Janson C. A., Smith W. W., Abdel-Meguid S. S. 1996; Unique fold and active site in cytomegalovirus protease. Nature 383:275–279
    [Google Scholar]
  15. Shieh H., Kurumbail R. G., Stevens A. M., Stegeman R. A., Sturman E. J., Pak J. Y., Wittwer A. J., Palmier M. O., Wiegand R. C., Holwerda B. C., Stallings W. C. 1996; Three-dimensional structure of human cytomegalovirus protease. Nature 383:279–282
    [Google Scholar]
  16. Tong L., Qian C., Massariol M., Bonneau P. R., Cordingley M. G., Lagace L. 1996; A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383:272–275
    [Google Scholar]
  17. Weinheimer S. P., McCann P. J., O’Boyle D. R., Stevens J. T., Boyd B. A., Drier D. A., Yamanaka G. A., DiIanni C. L., Deckman I. C., Cordingley M. G. 1993; Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. Journal of Virology 67:5813–5822
    [Google Scholar]
  18. Welch A. R., McNally L. M., Gibson W. 1991; Cytomegalovirus assembly protein nested gene family: four 3′-coterminal transcripts encoded four in-frame overlapping proteins. Journal of Virology 65:4091–4100
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-9-2153
Loading
/content/journal/jgv/10.1099/0022-1317-78-9-2153
Loading

Data & Media loading...

Most cited Most Cited RSS feed