Kinetics of viral RNA synthesis following cell-to-cell transmission of human immunodeficiency virus type 1 Free

Abstract

The temporal appearance and levels of human immunodeficiency virus type 1 (HIV-1) and mRNA species were examined using a synchronized, one-step, cell-to-cell HIV-1 infection model involving HUT-78 cells and HIV-1 persistently infected H3B cells. Individual mRNAs were quantified by RT-PCR using RNA standards transcribed from cDNA clones. Consistent with an infection that produces high yields of virus, significant levels of and mRNAs were detected in the cytoplasm of infected cells late in the infection cycle. However, at no time after infection did levels of and mRNA, which encode the regulatory proteins of HIV-1, exceed their levels present in the persistently infected virus donor H3B cells. The absence of early phase induction of these mRNAs is in contrast to what is observed in cell-free HIV-1 infections or in PMA-stimulated HIV-1 chronically infected cell lines. Our results suggest that and mRNAs are already present in the cytoplasm of the persistently infected virus donor cells at levels sufficient for initiation and establishment of a highly productive infection in HIV-1 fusion-mediated infected cells. Thus, lack of sufficient Tat and Rev proteins is not likely to be the limiting factor for virus production in H3B cells, nor is increased production of these proteins likely to be the cause of the increased virus production seen following cell- to-cell transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-8-1897
1997-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/8/9266985.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-8-1897&mimeType=html&fmt=ahah

References

  1. Aiken C., Trono D. 1995; Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. Journal of Virology 69:5048–5056
    [Google Scholar]
  2. Berube P., Barbeau B., Cantin R., Sekaly R. -P., Tremblay M. 1996; Repression of human immunodeficiency virus type 1 long terminal repeat-driven gene expression by binding of the virus to its primary cellular receptor, the CD4 molecule. Journal of Virology 70:4009–4016
    [Google Scholar]
  3. Bukrinskaya A. G., Vorkunova G. K., Tentsov Y. Y. 1992; HIV-1 matrix protein p17 resides in cell nuclei in association with genomic RNA. AIDS Research and Human Retroviruses 8:1795–1801
    [Google Scholar]
  4. Butera S. T., Roberts B. D., Lam L., Hodge T., Folks T. M. 1994; Human immunodeficiency virus type 1 RNA expression by four chronically infected cell lines indicates multiple mechanisms of latency. Journal of Virology 68:2726–2730
    [Google Scholar]
  5. Cannon P., Kim S. -H., Ulich C., Kim S. 1994; Analysis of Tat function in human immunodeficiency virus type 1-infected low-level- expression cell lines U1 and ACH-2. Journal of Virology 68: 1993–1997
    [Google Scholar]
  6. Chowers M. Y., Spina C. A., Kwoh T. J., Fitch N. J. S., Richman D. D., Guatelli J. C. 1994; Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. Journal of Virology 68:2906–2914
    [Google Scholar]
  7. Cullen B. R. 1994; RNA-sequence-mediated gene regulation in HIV- 1. Infectious Agents and Disease 3:68–76
    [Google Scholar]
  8. Delidow B. C., Lynch J. P., Peluso J. J., White B. A. 1993; PCR Protocols: current methods and applications. In Methods in Molecular Biology White B. A. Edited by Totowa, NJ: Humana Press;
    [Google Scholar]
  9. Duan L., Oakes J. W., Ferraro A., Bagasra O., Pomerantz R. J. 1994; Tat and Rev differentially affect restricted replication of human immunodeficiency virus type 1 in various cells. Virology 199:474–478
    [Google Scholar]
  10. Fenyo E. M., Morfeldt-Manson L., Chiodi F., Lind B., von Gegerfelt A., Albert J., Olausson E., Asjo B. 1988; Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 62:4414–4419
    [Google Scholar]
  11. Folks T. M., Justement J., Kinter A., Dinarello C. A., Fauci A. S. 1987; Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238:800–802
    [Google Scholar]
  12. Gough N. M. 1988; Rapid and quantitative preparation of cytoplasmic RNA from small numbers of cells. Analytical Biochemistry 173:93–95
    [Google Scholar]
  13. Granelli-Piperno A., Pope M., Inaba K., Steinman R. M. 1995; Coexpression of NF-^B/Rel and SP1 transcription factors in human immunodeficiency virus 1-induced, dendritic cell-T-cell syncytia. Proceedings of the National Academy of Sciences USA: 9210944–10948
    [Google Scholar]
  14. Guatelli J. C., Gingeras T. R., Richman D. D. 1990; Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. Journal of Virology 64:4093–4098
    [Google Scholar]
  15. Gupta P., Balachandran R., Ho M., Enrico A., Rinaldo C. 1989; Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. Journal of Virology 63:2361–2365
    [Google Scholar]
  16. Hammes S. R., Dixon E. P., Malim M. H., Cullen B. R., Greene W. C. 1989; Nef protein of human immunodeficiency virus type 1 : evidence against its role as a transcriptional inhibitor. Proceedings of the National Academy of Sciences USA: 86 9549–9553
    [Google Scholar]
  17. Kao S. Y., Calman A. F., Luciw P. A., Peterlin B. M. 1987; Antitermination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330:489–493
    [Google Scholar]
  18. Kashanchi F., Piras G., Radonovich M. F., Duvall J. F., Fattaey A., Chiang C. -M., Roeder R. G., Brady J. N. 1994; Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367:295–299
    [Google Scholar]
  19. Kim S., Ikeuchi K., Byrn R., Groopman J., Baltimore D. 1989a; Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences USA: 869544–9548
    [Google Scholar]
  20. Kim S. Y., Byrn R., Groopman J., Baltimore D. 1989b; Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. Journal of Virology 63:3708–3713
    [Google Scholar]
  21. Klotman M. E., Kim S., Buchbinder A., DeRossi A., Baltimore D., Wong-Staal F. 1991; Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proceedings of the National Academy of Sciences USA: 88:5011–5015
    [Google Scholar]
  22. Li P., Burrell C. J. 1992; Synthesis of human immunodeficiency virus DNA in a cell-to-cell transmission model. AIDS Research and Human Retroviruses 8:253–259
    [Google Scholar]
  23. Li P., Kuiper L. J., Stephenson A. J., Burrell C. J. 1992; De novoreverse transcription is a crucial event in cell-to-cell transmission of human immunodeficiency virus. Journal of General Virology 73:955–959
    [Google Scholar]
  24. Li P., Stephenson A. J., Brennan P. A., Karageorgos L., Kok T., Kuiper L. J., Swift J., Burrell C. J. 1994; Initiation of reverse transcription during cell-to-cell transmission of human immunodeficiency virus infection uses pre-existing reverse transcriptase. Journal of General Virology 75:1917–1926
    [Google Scholar]
  25. Lifson J. D., Reyes G. R., McGrath M. C., Stein B. S., Engleman E. G. 1986; AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1127
    [Google Scholar]
  26. Linial M., Gunderson N., Groudine M. 1985; Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science 230:1126–1132
    [Google Scholar]
  27. Maitra R. K., Ahmad N., Holland S. M., Venkatesan S. 1991; Human immunodeficiency virus type 1 (HIV-1) provirus expression and LTR transcription are repressed in NEF-expressing cell lines. Virology 182:522–533
    [Google Scholar]
  28. Meyer B. E., Malim M. H. 1994; The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes & Development 8:1538–1547
    [Google Scholar]
  29. Michael N. L., Morrow P., Mosca J., Vahey M., Burke D. S., Redfield R. R. 1991; Induction of human immunodeficiency virus type 1 expression in chronically infected cells is associated primarily with a shift in RNA splicing patterns [published erratum appears in Journal of Virology 1991 Dec; 65(12) : 7084].. Journal of Virology 65:1291–1303
    [Google Scholar]
  30. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. 1985; Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313:450–458
    [Google Scholar]
  31. Munis J. R., Kornbluth R. S., Guatelli J. C., Richman D. D. 1992; Ordered appearance of human immunodeficiency virus type 1 nucleic acids following high multiplicity infection of macrophages. Journal of General Virology 73:1899–1906
    [Google Scholar]
  32. Myers G., Rabson A. B., Josephs S. F., Smith T. F., Benzofsky J. A., Wong-Staal F. 1990 Human Retroviruses and AIDS1990Los Alamos, New MexicoLos Alamos National Laboratory
    [Google Scholar]
  33. Nabel G., Baltimore D. 1987; An inducible transcription factor activates expression of human immunodeficiency virus in T cells [published erratum appears in Nature 1990 Mar 8; 3446262 178. Nature 326:711–713
    [Google Scholar]
  34. Nakajima-Iijima S., Hamada H., Reddy P., Kakunaga T. 1985; Molecular structure of the human cytoplasmic beta-actin gene : interspecies homology of sequences in the introns. Proceedings of the National Academy of Sciences USA: 826133–6137
    [Google Scholar]
  35. Osborn L., Kunkel S., Nabel G. J. 1989; Tumour necrosis factor and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor KB. Proceedings of the National Academy of Sciences USA: 862336–2340
    [Google Scholar]
  36. Peng H., Reinhart T. A., Retzel E. F., Staskus K. A., Zupancic M., Haase A. T. 1995; Single cell transcript analysis of human immunodeficiency virus gene expression in the transition from latent to productive infection. Virology 206:16–27
    [Google Scholar]
  37. Pietroboni G. R., Harnett G. B., Bucens M. R. 1989; Centrifugal enhancement of human immunodeficiency virus (HIV) and human herpesvirus type 6 (HHV-6) infection in vitro. Journal of Virology Methods 24:85–90
    [Google Scholar]
  38. Pomerantz R. J., Trono D., Feinberg M. B., Baltimore D. 1990; Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61:1271–1276
    [Google Scholar]
  39. Pomerantz R. J., Seshamma T., Trono D. 1992; Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev:potential implicationsfor latency. Journal of Virology 66:1809–1813
    [Google Scholar]
  40. Purcell D. F., Martin M. A. 1993; Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. Journal of Virology 67:6365–6378
    [Google Scholar]
  41. Raziuddin Mikovits, Calvert I., Ghosh S., Kung H. F., Ruscetti F. W. 1991; Negative regulation of human immunodeficiency virus type 1 expression in monocytes: role of the 65-kDa plus 50-kDa NF- kappa B dimer. Proceedings of the National Academy of Sciences USA: 889426–9430
    [Google Scholar]
  42. Richard N., lacampo S., Cochrane A. 1994; HIV-1 Rev is capable of shuttling between the nucleus and cytoplasm. Virology 204:123–131
    [Google Scholar]
  43. Robert-Guroff M., Popovic M., Gartner S., Markham P., Gallo R. C., Reitz M. S. 1990; Structure and expression of tat-, rev-, and nef- specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. Journal of Virology 64:3391–3398
    [Google Scholar]
  44. Schwartz O., Marechal V., Danos O., Heard J. -M. 1995; Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. Journal of Virology 69:4053–4059
    [Google Scholar]
  45. Schwartz S., Felber B. K., Benko D. M., Fenyo E. M., Pavlakis G. N. 1990; Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. Journal of Virology 64:2519–2529
    [Google Scholar]
  46. Seshamma T., Bagasra O., Oakes J. W., Pomerantz R. J. 1992; A quantitative reverse transcriptase-polymerase chain reaction for HIV-1- specific RNA species. Journal of Virological Methods 40:331–346
    [Google Scholar]
  47. Terwilliger E., Sodroski J. G., Rosen C. A., Haseltine W. A. 1986; Effects of mutations within the 3′ orf open reading frame region of the HTLV111 /LAV on replication and cytopathogenicity. Journal of Virology 60:754–760
    [Google Scholar]
  48. Yoffe B., Lewis D. E., Petrie B. L., Noonan C. A., Melnick J. L., Hollinger F. B. 1987; Fusion as a mediator of cytolysis in mixtures of uninfected CD4 + lymphocytes and cells infected by human immunodeficiency virus. Proceedings of the National Academy of Sciences USA: 841429–1433
    [Google Scholar]
  49. Zhang X., Li P., Burrell C. J. 1994; Establishment ofpersistent HIV- 1 infection in vitro is accompanied by reduction of NF-kB activity. Archives of Virology 138:169–176
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-8-1897
Loading
/content/journal/jgv/10.1099/0022-1317-78-8-1897
Loading

Data & Media loading...

Most cited Most Cited RSS feed