A protoplast system for studying tomato spotted wilt virus infection. Free

Abstract

A plant protoplast system for studying tomato spotted wilt tospovirus (TSWV) infection was established and tested. Using polyethylene glycol-mediated inoculation with highly infectious TSWV particles, generally 50% or more of protoplasts were infected. In these cells viral RNA and viral protein synthesis became detectable at 16 h post-inoculation (p.i.) and continued at least until 90 h p.i. Both the structural viral proteins [nucleoprotein (N) and the envelope glycoproteins G1 and G2] and the nonstructural viral proteins NSs and NSm accumulated to amounts sufficient for detection and immunocytological analysis. Local lesion tests on petunia leaves and electron microscopical analysis confirmed the production of mature, infectious virus particles, underlining the conclusion that a full infection cycle was completed in this system. Upon inoculation of (cowpea) protoplasts with TSWV particles, comparable proportions of infected cells and amounts of NSs, NSm and N protein were obtained, but much lower amounts of viral glycoproteins were detected than in protoplasts, and progeny virus particles were less abundant. With the -based protoplast system, a powerful synchronized single-cell infection system has now become available for more precise studies of the processes occurring during tospovirus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-7-1755
1997-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/7/9225052.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-7-1755&mimeType=html&fmt=ahah

References

  1. Bailey J. M., Davidson N. 1976; Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Analytical Biochemistry 70:75–85
    [Google Scholar]
  2. Brunt A. A., Crabtree K., Dallwitz M. J., Gibbs A. J., Watson L.Editors 1996; . In Viruses of Plants; Description and Lists from the VIDE Database pp lingford: CAB International;
    [Google Scholar]
  3. de Ávila A. C., deHaan P., Smeets M.L.L., Resende R. deO., Kormelink R., Kitajima E. W., Goldbach R. W., Peters D. 1993; .Distinct levels of relationships between tospovirus isolates. Archives of Virology 128:211–227
    [Google Scholar]
  4. de Haan P., Wagemakers L., Peters D., Goldbach R. 1990; The S RNA segment of tomato spotted wilt virus has an ambisense character. Journal of General Virology 71:1001–1007
    [Google Scholar]
  5. de Haan P., Kormelink R., Resende R. deO., vanPoelwijk F., Peters D., Goldbach R. 1991; Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 72:2207–2216
    [Google Scholar]
  6. Eggen R., Verver J., Wellink J., deJong A., Goldbach R., van Kammen A. 1989; Improvements of the infectivity of in vitro transcripts from cloned cowpea mosaic virus cDNA: impact of terminal nucleotide sequences. Virology 173:447–455
    [Google Scholar]
  7. Francki R. I. B., Grivell C. J. 1970; An electron microscope study of the distribution of tomato spotted wilt virus in systemically infected Datura stramonium leaves. Virology 42:969–978
    [Google Scholar]
  8. German T. L., Ullman D. E., Moyer J. W. 1992; Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annual Review of Phytopathology 30:315–348
    [Google Scholar]
  9. Gielen J. J. L., deHaan P., Kool A. J., Peters D., vanGrinsven M. Q. J. M., Goldbach R. W. 1991; Engineered resistance to tomato spotted wilt virus, a negative strand RNA virus. Bio/Technology 9:1363–1367
    [Google Scholar]
  10. Goldbach R., Peters D. 1996; Molecular and biological aspects of tospoviruses. In The Bunyaviridae pp 129–157 Elliott R. M. Edited by New York: Plenum Press;
    [Google Scholar]
  11. Goldbach R., Kormelink R., de Haan P., Resende R., de O., de ávila C., van Poelwijk F., van Lent J., Wijkamp I., Prins M., Peters D. 1992; Tomato spotted wilt virus : genome organization, transmission and symptom induction. Proceedings of the Fifth International Symposium on Biotechnology and Plant Protection, College Park, Maryland, USA:
    [Google Scholar]
  12. Gonsalves D., Trujillo E. E. 1986; Tomato spotted wilt virus in papaya and detection of the virus by ELISA. Plant Disease 70:501–506
    [Google Scholar]
  13. Hibi T., Rezelman G., van Kammen A. 1975; Infection of cowpea mesophyll protoplasts with cowpea mosaic virus. Virology 64:308–318
    [Google Scholar]
  14. Ie T. S. 1971; Electron microscopy of developmental stages of tomato spotted wilt virus in plant cells. Virology 43:468–479
    [Google Scholar]
  15. Jones R. W., Jackson A. O. 1990; Replication of sonchus yellow net virus in infected protoplasts. Virology 179:815–820
    [Google Scholar]
  16. Kitajima E. W. 1965; Electron microscopy of vira-cabecca virus (Brazilian tomato spotted wilt virus) within the host cell. Virology 26:89–99
    [Google Scholar]
  17. Kitajima E. W., de Ávila A. C., Resende R., de O., Goldbach R. W., Peters D. 1992; Comparative cytological and immunogold labeling studies on different isolates of tomato spotted wilt virus. Journal of Submicroscopical Cytology and Pathology 24:1–14
    [Google Scholar]
  18. Kormelink R., Kitajima E. W., de Haan P., Zuidema D., Peters D., Goldbach R. 1991; The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459–468
    [Google Scholar]
  19. Kormelink R., de Haan P., Meurs C., Peters D., Goldbach R. 1992a; The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. Journal of General Virology 73:2795–2804
    [Google Scholar]
  20. Kormelink R., de Haan P., Peters D., Goldbach R. 1992b; Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. Journal of General Virology 73:687–693
    [Google Scholar]
  21. Kormelink R., Storms M., van Lent J., Peters D., Goldbach R. 1994; Expression and subcellular location of the NSm protein of tomato spotted wilt virus TSWV, a putative movement protein. Virology 200:56–65
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  23. Lawson R. H., Dienelt M. M., Hsu H. T. 1996; Ultrastructural comparisons of defective, partially defective and nondefective isolates of impatiens necrotic spot virus. Phytopathology 86:650–661
    [Google Scholar]
  24. Milne R. G. 1970; An electron microscope study of tomato spotted wilt virus in sections of infected cells and in negative stain preparations. Journal of General Virology 6: 267–276
    [Google Scholar]
  25. Mumford R. A., Barker I., Wood K. R. 1996; The biology of the tospoviruses. Annals of Applied Biology 128:159–183
    [Google Scholar]
  26. Murashige T., Skoog F. 1962; A revised medium for rapid growth and bio-assays with tobacco tissue. Physiology of Plants 15:473–497
    [Google Scholar]
  27. Prins M., Kikkert M., Ismayadi C., de Graauw W., de Haan P., Goldbach R. 1997; Characterization of RNA mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSm gene sequences. Plant Molecular Biology 33:235–243
    [Google Scholar]
  28. Resende R., de O., de Haan P., de Ávila A. C., Kitajima E. W., Kormelink R., Goldbach R., Peters D. 1991; Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. Journal of General Virology 72:2375–2383
    [Google Scholar]
  29. Satiat-Jeunemaitre B., Hawes C. 1992a; Reversible dissociation of the plant Golgi apparatus by Brefeldin A. Biology of the Cell 74:325–328
    [Google Scholar]
  30. Satiat-Jeunemaitre B., Hawes C. 1992b; Redistribution of a Golgi glycoprotein in plant cells treated with Brefeldin A. Journal of Cell Science 103:1153–1166
    [Google Scholar]
  31. Storms M., Kormelink R., Peters D., van Lent J., Goldbach R. 1995; The nonstructural protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493
    [Google Scholar]
  32. van Beek N. A. M., Derksen A. C. G., Dijkstra J. 1985; Polyethylene glycol-mediated infection of cowpea protoplasts with sonchus yellow net virus. Journal of General Virology 66:551–557
    [Google Scholar]
  33. van Poelwijk F., Boye K., Oosterling R., Peters D., Goldbach R. W. 1993; Detection of the L protein of tomato spotted wilt virus. Virology 197:468–470
    [Google Scholar]
  34. van Poelwijk F., Kikkert M., Prins M., Kormelink R., Storms M., van Lent J., de Haan P., Peters D., Goldbach R. 1996; .Replication and expression of the tospoviral genome. Proceedings of the International Symposium on tospoviruses and thrips of floral and vegetable crops. Acta Horticulturae 431:201–208
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-7-1755
Loading
/content/journal/jgv/10.1099/0022-1317-78-7-1755
Loading

Data & Media loading...

Most cited Most Cited RSS feed