1887

Abstract

Capsid proteins VP1, VP2 and VP3 of adeno- associated virus type 2 (AAV-2) were separately expressed by recombinant baculoviruses, purified under denaturing conditions and renatured in the presence of 0·5 M arginine, followed by dialysis against buffers of physiological ionic strength. At a protein concentration of 0·05 mg/ml, the three capsid proteins predominantly formed monomers and, to a lesser extent, oligomers, as determined by sedimentation analysis. Oligomerization increased at higher protein concentrations. The capsid protein oligomers consisted of globular, non-capsid-like structures, as detected by electron microscopy. Addition of a HeLa cell extract significantly stimulated oligomerization of the capsid proteins, probably due to interactions with HeLa cell proteins. Characterization of structures sedimenting around 60S by immunoprecipitation and electron microscopy showed that, in addition to other aggregates, empty capsid-like structures were formed . The identity of these structures as empty AAV capsidswasverified by immunoelectron microscopy. Analysis of capsid formation in HeLa cells by transfection of VP expression constructs allowing separate expression of VP1, VP2 and VP3 showed that they were able to form capsids, although with a reduced efficiency as compared to VP proteins expressed from the wt cap gene. This finding suggests that the mutations introduced to allow separate capsid protein expression reduced the efficiency of capsid assembly and might also explain the reduced recovery of empty capsids employing the assembly procedure.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-6-1453
1997-06-01
2022-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/6/9191943.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-6-1453&mimeType=html&fmt=ahah

References

  1. Arella M., Garzon S., Bergeron J., Tijssen P. 1990; Physiochemical properties, production, and purification of parvoviruses. In Handbook of Parvoviruses 1 pp 11–30 Tijssen P. Edited by Boca Raton, Florida: CRC Press;
    [Google Scholar]
  2. Becerra S. P., Rose J. A., Hardy M., Baroudy B. M., Anderson C. W. 1985; Direct mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proceedings of the National Academy of Sciences USA: 827919–7923
    [Google Scholar]
  3. Becerra S. P., Koczot F., Fabisch P., Rose J. A. 1988; Synthesis of adeno-associated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript. Journal of Virology 62:2745–2754
    [Google Scholar]
  4. Buchner J., Rudolph R. 1991; Renaturation, purification and characterisation of recombinant Fab-fragments produced in Escherichia coli. Bio/Technology 9:157–162
    [Google Scholar]
  5. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F. X., Kiefhaber T. 1991; GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591
    [Google Scholar]
  6. Buller R. M., Rose J. A. 1978; Characterization of adeno-associated virus-induced polypeptides in KB cells. Journal of Virology 25:331–338
    [Google Scholar]
  7. Cassinotti P., Weitz M., Tratschin J. D. 1988; Organization of the adeno-associated virus (AAV) capsid gene: mapping of a minor spliced mRNA coding for virus capsid protein 1. Virology 167:176–184
    [Google Scholar]
  8. Chen A., Okayama H. 1987; High-efficiency transformation of mammalian cells by plasmid DNA. Molecular and Cellular Biology 7:2745–2752
    [Google Scholar]
  9. Chen A., Okayama H. 1988; Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. BioTechniques 6:632–638
    [Google Scholar]
  10. Colomar M. C., Degoumois-Sahli C., Beard P. 1993; Opening and refolding of simian virus 40 and in vitro packaging of foreign DNA. Journal of Virology 67:2779–2786
    [Google Scholar]
  11. de la Maza L. M., Carter B. J. 1980; Heavy and light particles of adeno-associated virus. Journal of Virology 33:1129–1137
    [Google Scholar]
  12. Ellis R. J., van der Vies S. M. 1991; Molecular chaperones. Annual Review of Biochemistry 60:321–347
    [Google Scholar]
  13. Frydman J., Nimmesgern E., Erdjument-Bromage H., Wall J. S., Tempst P., Hartl F. U. 1992; Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO Journal 11:4767–4778
    [Google Scholar]
  14. Harlow E., Lane D. 1988; Immunoblotting. In Antibodies: A Laboratory Manual pp 471–511 Harlow E., Lane D. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Hermonat P. L., Labow M. A., Wright R., Berns K. I., Muzyczka N. 1984; Genetics of adeno-associated virus : isolation and preliminary characterization of adeno-associated virus type 2 mutants. Journal of Virology 51:329–339
    [Google Scholar]
  16. Hink N. F. 1970; Established insect cell line from cabbage looper, Trichoplasia ni. Nature 226:466–467
    [Google Scholar]
  17. Hoggan M. D. 1970; Adeno-associated viruses. Progress in Medical Virology 12:211–239
    [Google Scholar]
  18. Johnson F. B. 1984; Parvovirus proteins. In The Parvoviruses pp 259–295 Berns K. I. Edited by New York: Plenum Press;
    [Google Scholar]
  19. Muralidhar S., Becerra S. P., Rose J. A. 1994; Site-directed mutagenesis of adeno-associated virus type 2 structural protein initiation codons: effects on regulation of synthesis and biological activity. Journal of Virology 68:170–176
    [Google Scholar]
  20. Myers M. W., Carter B. J. 1980; Assembly of adeno-associated virus. Virology 102:71–82
    [Google Scholar]
  21. Myers M. W., Carter B. J. 1981; Adeno-associated virus replication. The effect of canavanine or a helper virus mutation on accumulation of viral capsids and progeny single-stranded DNA. Journal of Biological Chemistry 256:567–570
    [Google Scholar]
  22. Oosawa F., Asakura S. 1975; Thermodynamics of the polymerization of protein. In Molecular Biology Horecker B., Kaplan N. O., Marmur J., Scheraga H. A. Edited by London: Academic Press;
    [Google Scholar]
  23. Pollard T., Cooper J. A. 1986; Actin and actin binding proteins. A critical evaluation of mechanisms and functions. Annual Review of Biochemistry 55:978–1035
    [Google Scholar]
  24. Ready K. F. M., Sabara M. I. J., Babiuk L. A. 1988; In vitro assembly of the outer capsid of bovine rotavirus is calcium-dependent. Virology 167:269–273
    [Google Scholar]
  25. Rodgers R. E. D., Chang D., Cai X., Consigli R. A. 1994; Purification ofrecombinant budgerigar fledgling disease virusVP1 capsid protein and its ability for in vitro capsid assembly. Journal of Virology 68:3386–3390
    [Google Scholar]
  26. Rose J. A., Maizel J. V., Inman J. K., Shatkin A. J. 1971; Structural proteins of adeno-associated viruses. Journal of Virology 8:766–770
    [Google Scholar]
  27. Rudolph R. 1990; Renaturation of recombinant, disulfide-bond proteins from inclusion bodies. In Modern Methods in Protein- and Nucleic Acid Research pp 149–171 Tschesche H. Edited by Berlin: Walter de Gruyter;
    [Google Scholar]
  28. Ruffing M., Zentgraf H., Kleinschmidt J. A. 1992; Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells. Journal of Virology 66:6922–6930
    [Google Scholar]
  29. Ruffing M., Heid H., Kleinschmidt J. A. 1994; Mutations in the carboxy terminus of adeno-associated virus 2 capsid proteins affect viral infectivity: lack of an RGD integrin-binding motif. Journal of General Virology 75:3385–3392
    [Google Scholar]
  30. Salunke D. M., Caspar D. L. D., Garcea R. L. 1986; Self-assembly of purified polyomavirus capsid protein VP1. Cell 46:895–904
    [Google Scholar]
  31. Salunke D. M., Caspar D. L. D., Garcea R. L. 1989; Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophysical Journal 56:887–900
    [Google Scholar]
  32. Schneemann A., Gallagher T. M., Rueckert R. R. 1994; Reconstitution of flock house provirions: a model system for studying structure and assembly. Journal of Virology 68:4547–4556
    [Google Scholar]
  33. Smuda J. W., Carter B. J. 1991; Adeno-associated virus having nonsense mutations in the capsid genes: growth in mammalian cells containing an inducible amber suppressor. Virology 184:310–318
    [Google Scholar]
  34. Srivastava A., Lusby E. W., Berns K. I. 1983; Nucleotide sequence and organization of the adeno-associated virus 2 genome. Journal of Virology 45:555–564
    [Google Scholar]
  35. Thomas J. O., Kornberg R. D. 1975; An octamer of histones in chromatin and free in solution. Proceedings of the National Academy of Sciences USA: 722626–2630
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. 1979; Eletrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences USA: 764350–4354
    [Google Scholar]
  37. Tratschin J. D., Miller I. L., Carter B. J. 1984; Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitroand evidence for an adeno-associated virus replication function. Journal of Virology 51:611–619
    [Google Scholar]
  38. Trempe J. P., Carter B. J. 1988; Alternate mRNA splicing is required for synthesis of adeno-associated virus VP1 capsid protein. Journal of Virology 62:3356–3363
    [Google Scholar]
  39. Wistuba A., Weger S., Kern A., Kleinschmidt J. A. 1995; Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins. Journal of Virology 69:5311–5319
    [Google Scholar]
  40. Wistuba A., Kern A., Weger S., Grimm D., Kleinschmidt J. A. 1997; Subcellular compartmentalization of AAV-2 assembly. Journal of Virology 71:1341–1352
    [Google Scholar]
  41. Zhao X., Fox J. M., Olson N. H., Baker T. S., Young M. J. 1995; In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207:486–494
    [Google Scholar]
  42. Zlotnick A. 1994; To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. Journal of Molecular Biology 241:59–67
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-6-1453
Loading
/content/journal/jgv/10.1099/0022-1317-78-6-1453
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error