1887

Abstract

The haemagglutinin protein (H) of measles virus (MV) binds to susceptible cells and collaborates with the fusion protein (F) to mediate fusion of the virus with the cell membrane. Binding and fusion activity of the virus can be monitored by haemagglutination and haemolysis, respectively, of monkey erythrocytes. Most monoclonal antibodies (MAbs) with haemolysis inhibiting activity (HLI ) are either MV-F specific and do not inhibit haemagglutination (HI ), or they bind to MV-H and are HI by interfering with virus binding. We describe here a small panel of H- specific MAbs (BH47, BH59, BH103, BH129) which bind to a new linear neutralizing epitope, H244–250 (SELSQLS; NE domain), and which prevent virus-cell fusion (HLI ) but not virus binding (HI ). These antibodies also protect against MV encephalitis in an animal model. They do not compete with an HLI /HI antibody (BH216) which binds to the haemagglutinin noose epitope (HNE). The antibodies described here and the HNE-specific antibodies are functionally distinct and define two topographically non-overlapping interfaces, supposedly with a bias towards the host cell MV- receptor and the fusion protein respectively. The proximity of the CD46 downregulating amino acid Arg-243 may suggest a functional link between the domain described here and the CD46 binding domain. This new protective linear site is also of potential interest for the design of a subunit-based vaccine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-6-1295
1997-06-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/6/9191921.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-6-1295&mimeType=html&fmt=ahah

References

  1. Albrecht P., Ennis A., Soltzman E. J., Krugman S. 1977; Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. Journal of Pediatrics 91:715–718
    [Google Scholar]
  2. Alkhatib G., Briedis D. J. 1986; The predicted primary structure of the measles virus hemagglutinin. Virology 150:479–490
    [Google Scholar]
  3. Bartz R., Brinckmann U., Dunster L. M., Rima B., ter Meulen V., Schneider-Schaulies J. 1996; Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224:334–337
    [Google Scholar]
  4. Beauverger P., Buckland R., Wild F. 1993; Establishment and characterisation of murine cells constitutively expressing the fusion, nucleoprotein and matrix proteins of measles virus. Journal of Virological Methods 44:199–210
    [Google Scholar]
  5. Beauverger P., Buckland R., Wild T. F. 1994; Measles virus antigens induce both type-specific and canine distemper virus crossreactive cytotoxic T lymphocytes in mice : localization of a common Ld-restricted nucleoprotein epitope. Journal of General Virology 74:2357–2363
    [Google Scholar]
  6. Carter M. J., Willcocks M. M., Löffler S., ter Meulen V. 1982; Relationships between monoclonal antibody-binding sites on the measles virus haemagglutinin. Journal of General Virology 63:113–120
    [Google Scholar]
  7. Diamond B., Boccumini L., Birshtein B. K. 1985; Site ofbinding of IgG2b and IgG2a by mouse macrophage Fc receptors by using cyanogen bromide fragments. Journal of Immunology 134:1080–1083
    [Google Scholar]
  8. Dunster L. M., Schneider-Schaulies J., Löffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. 1994; Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology 198:265–274
    [Google Scholar]
  9. Fournier P., Ammerlaan W., Ziegler D., Giminez C., Rabourdin-Combe C., Fleckenstein B., Wiesmueller K. H., Jung G., Schneider F., Muller C. P. 1996; Differential activation of T cells by antibody- modulated processing of the flanking sequences of class II-restricted peptides. International Immunology 8:1441–1451
    [Google Scholar]
  10. Fulginiti V. A., Eller J. J., Downie A. W., Kempe C. H. 1967; Altered reactivity to Measles virus. Journal of the American Medical Association 202:1075–1080
    [Google Scholar]
  11. Gerlier D., Varior-Krishnan G., Devaux P. 1995; CD46-mediated measles entry: a first key to host-range specificity. Trends in Microbiology 3:338–345
    [Google Scholar]
  12. Giraudon P., Wild T. F. 1985; Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144:46–58
    [Google Scholar]
  13. Hu A., Sheshberadaran H., Norrby E., Kovamees J. 1993; Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192:351–354
    [Google Scholar]
  14. Hu A., Cattaneo R., Schwartz S., Norrby E. 1994; Role of N-linked oligosaccharide chains in the processing and antigenicity of measles virus haemagglutinin protein. Journal of General Virology 75:1043–1052
    [Google Scholar]
  15. Hummel K. B., Bellini W. J. 1995; Localization of monoclonal antibody epitopes and functional domains in the hemagglutinin protein of measles virus. Journal of Virology 69:1913–1916
    [Google Scholar]
  16. Ishizaka S. T., Piacente P., Silva J., Mishkin E. M. 1995; IgG subtype is correlated with efficiency of passive protection and effector function of anti-herpes virus glycoprotein D monoclonal antibodies. Journal of Infectious Diseases 172:1108–1111
    [Google Scholar]
  17. Lecouturier V., Fayolle J., Caballero M., Carabara J., Celma M. L., Fernandez-Munoz R., Wild T. F., Buckland R. 1996; Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 down-regulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70:4200–4204
    [Google Scholar]
  18. Liebert U. G., ter Meulen V. 1987; Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. Journal of General Virology 68:1715–1722
    [Google Scholar]
  19. Liebert U. G., Flanagan S. G., Löffler S., Baczko K., ter Meulen V., Rima B. K. 1994; Antig enic determinants of measles virus hemagglutinin associated with neurovirulence. Journal of Virology 68:1486–1493
    [Google Scholar]
  20. Mäkela M. J., Norrby E., Salmi A. 1987; Measurement of polypeptide- and antigenic site-specific antibodies to measles virus using a competitive enzyme immunoassay. Journal of Virological Methods 16:65–74
    [Google Scholar]
  21. Mäkela M. J., Salmi A. A., Norrby E., Wild T. F. 1989a; Monoclonal antibodies against measles virus haemagglutinin react with synthetic peptides [published erratum appears in Scand. J. Immunol. 1990 Apr; 31(4): 541]. Scandinavian Journal of Immunology 30:225–231
    [Google Scholar]
  22. Mäkela M. J., Lund G. A., Salmi A. A. 1989b; Antigenicity of the measles virus haemagglutinin studied by using synthetic peptides. Journal of General of Virology 70:603–614
    [Google Scholar]
  23. Malvoisin E., Wild F. 1990; Contribution of measles virus fusion protein in protective immunity: anti-F monoclonal antibodies neutralize virus infectivity and protect mice against challenge. Journal of Virology 64:5160–5162
    [Google Scholar]
  24. Malvoisin E., Wild F. 1994; The role of N-glycosylation in cell fusion induced by a vaccinia recombinant virus expressing both measles virus glycoproteins. Virology 200:11–20
    [Google Scholar]
  25. Muller C. P., Schroeder T., Tu R., Brons N. H. C., Jung G., Schneider F., Wiesmüller K. H. 1993; Analysis of the neutralizing antibody response to the measles virus using synthetic peptides of the haemagglutinin protein. Scandinavian Journal of Immunology 38:463–471
    [Google Scholar]
  26. Muller C. P., Beauverger P., Schneider F., Jung G., Brons N. H. C. 1995; Cholera toxin B stimulates systemic neutralizing antibodies after intranasal co-immunization with measles virus. Journal of General Virology 76:1371–1380
    [Google Scholar]
  27. Naniche D., Varior Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67:6025–6032
    [Google Scholar]
  28. Neuberger M. S., Rajewsky K. 1981; Activation of mouse complement by mouse monoclonal antibodies. European Journal of Immunology 11:1012–1016
    [Google Scholar]
  29. Nokes D. J., Cutts F. T. 1993; Immunization in the developing world: strategic challenges. Transactions and Research Social Tropical Medical Hygiene 87:353–354
    [Google Scholar]
  30. Norrby E., Gollmar Y. 1972; App earance and persistence of antibodies against different virus components after regular measles infections. Infection and Immunity 6:240–247
    [Google Scholar]
  31. Norrby E., Gollmar Y. 1975; Identification of measles virus-specific hemolysis-inhibiting antibodies separate from hemagglutination-inhibiting antibodies. Infection and Immunity 11:231–239
    [Google Scholar]
  32. Norrby E., Enders-Ruckle G., ter Meulen V. 1975; Differences in the appearance of antibodies to structural components of measles virus after immunization with inactivated and live viruses. Journal of Infectious Diseases 132:262–269
    [Google Scholar]
  33. Obeid O. E., Steward M. W. 1994; The potential of immunization with synthetic peptides to overcome the immunosuppressive effect of maternal anti-measles virus antibodies in young mice. Immunology 82:16–21
    [Google Scholar]
  34. Obeid O. E., Partidos C. D., Steward M. W. 1994; Analysis of the antigenic profile of measles virus haemagglutinin in mice and humans using overlapping synthetic peptides. Virus Research 32:69–84
    [Google Scholar]
  35. Obeid O. E., Partidos C. D., Howard C. R., Steward M. W. 1995; Protection against morbillivirus-induced encephalitis by immunization with a rationally designed synthetic peptide vaccine containing B- and T-cell epitopes from the fusion protein of measles virus. Journal of Virology 69:1420–1428
    [Google Scholar]
  36. Orvell C. 1976; Identification of paramyxovirus-specific haemolysis-inhibiting antibodies separate from haemagglutinating-inhibiting and neuraminidase-inhibiting antibodies. Acta Pathologica et Microbiologica Scandinavica Section B 84:441–450
    [Google Scholar]
  37. Parry N., Fox G., Rowlands D., Brown F., Fry E., Acharya R., Logan D., Stuart D. 1990; Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature 347:569–572
    [Google Scholar]
  38. Piga N., Kessler N., Layani M. P., Aymard M. 1990; Correlation between the reactivity patterns of monoclonal antibodies to distinct antigenic sites on HN glycoprotein and their protective abilities in Sendai (6/94) virus infection. Archives of Virology 110:179–193
    [Google Scholar]
  39. Ravetch J. V., Kinet J. P. 1991; Fc receptors. Annual Review of Immunology 9:457–492
    [Google Scholar]
  40. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142
    [Google Scholar]
  41. Sheshberadaran H., Norrby E. 1986; Characterization of epitopes on the measles virus hemagglutinin. Virology 152:58–65
    [Google Scholar]
  42. Sheshberadaran H., Payne L. G. 1988; Protein antigen-monoclonal antibody contact sites investigated by limited proteolysis of monoclonal antibody-bound antigen: protein “footprinting”. Proceedings of the National Academy of Sciences, USA 85:1–5
    [Google Scholar]
  43. Shibahara K., Hotta H., Katayama Y., Homma M. 1994; Increased binding activity of measles virus to monkey red blood cells after longterm passage in Vero cell cultures. Journal of General Virology 75:3511–3516
    [Google Scholar]
  44. Stern L. B., Greenberg M., Gershoni J. M., Rozenblatt S. 1995; The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. Journal of Virology 69:1661–1668
    [Google Scholar]
  45. Steward M. W., Stanley C. M., Obeid O. E. 1995; A mimotope from a solid-phase peptide library induces a measles virus-neutralizing and protective antibody response. Journal of Virology 69:7668–7673
    [Google Scholar]
  46. Tamin A., Rota P. A., Wang Z. D., Heath J. L., Anderson L. J., Bellini W. J. 1994; Antigenic analysis of current wild type and vaccine strains of measles virus. Journal of Infectious Diseases 170:795–801
    [Google Scholar]
  47. Tsurudome M., Yamada A., Hishiyama M., Ito Y. 1986; Monoclonal antibodies against the glycoproteins of mumps virus: fusion inhibition by anti-HN monoclonal antibody. Journal of General Virology 67:2259–2265
    [Google Scholar]
  48. Wiesmuller K. H., Spahn G., Handtmann D., Schneider F., Jung G., Muller C. P. 1992; Heterogeneity of linear B cell epitopes of the measles virus fusion protein reacting with late convalescent sera. Journal of General Virology 73:2211–2216
    [Google Scholar]
  49. Wild T. F., Malvoisin E., Buckland R. 1991; Measles virus : both the haemagglutinin and fusion glycoproteins are required for fusion. Journal of General Virology 72:439–442
    [Google Scholar]
  50. Ziegler D., Fournier P., Berbers G. A. M., Steuer H., Wiesmüller K. H., Fleckenstein B., Schneider F., Jung G., King C. C., Muller C. P. 1996; Protection against measles virus encephalitis by monoclonal antibodies binding to a cystine loop domain of the H protein mimicked by peptides which are not recognized by maternal antibodies. Journal of General Virology 77:2479–2489
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-78-6-1295
Loading
/content/journal/jgv/10.1099/0022-1317-78-6-1295
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error