1887

Abstract

I protein labelling of oligo(dT)-selected RNAfrom feline calicivirus (FCV)-infected cells revealed that the genomic and 2·4 kb subgenomic RNAs of FCV are linked to a 15 kDa protein (VPg). Proteinase K treatment of FCV RNA, to remove VPg, led to a decrease in the translatability of the RNA, but there was no obvious change in the site of RNA initiation. Addition of the cap analogue 7-methylGTP to translations had no effect on the translation of FCV RNA, suggesting that FCV RNA is translated by a cap-independent mechanism. Further evidence that FCV RNA is translated by an unusual mechanism was obtained by translating FCV RNA at a range of K concentrations. FCV RNA was able to direct translation at K concentrations at which cellular RNA translation was inhibited.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-5-1033
1997-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/5/9152420.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-5-1033&mimeType=html&fmt=ahah

References

  1. Belsham G. J., Lomonossoff G. P. 1991; The mechanism of translation of cowpea mosaic virus middle component RNA: no evidence for internal initiation from experiments in an animal cell transient expression system. Journal of General Virology 72:3109–3113
    [Google Scholar]
  2. Black D. N., Brown F. 1977; Proteins induced by infection with caliciviruses. Journal of General Virology 38:75–82
    [Google Scholar]
  3. Black D. N., Burroughs J. N. B., Harris T. J. R., Brown F. 1978; The structure and replication of calicivirus RNA. Nature 274:614–615
    [Google Scholar]
  4. Brierley I., Boursnell M. E. G., Binns M. M., Bilimoria B., Blok V. C., Brown T. D. K., Inglis S. C. 1987; An efficient ribosomal frame-shifting-signal in the polymerase-encoding region of the coronavirus IBV. EMBO 6:3779–3785
    [Google Scholar]
  5. Burroughs J. N., Brown F. 1978; Presence of a covalently linked protein on calicivirus RNA. Journal of General Virology 41:443–446
    [Google Scholar]
  6. Carter M. J. 1989; Feline calicivirus protein synthesis investigated by Western blotting. Archives of Virology 108:69–79
    [Google Scholar]
  7. Carter M. J. 1990; Transcription of feline calicivirus RNA. Archives of Virology 114:143–152
    [Google Scholar]
  8. Carter M. J., Milton I. D., Turner P. C., Meanger J., Bennett M., Gaskell R. M. 1992a; Identification and sequence determination of the capsid gene of feline calicivirus. Archives of Virology 122:223–235
    [Google Scholar]
  9. Carter M. J., Milton I. D., Meanger J., Bennett M., Gaskell R. M., Turner P. C. 1992b; The complete nucleotide sequence of feline calicivirus. Virology 190:443–448
    [Google Scholar]
  10. Chu P. W. G., Guido B., Franki R. I. B. 1981; Requirement of a genome associated protein of tobacco ringspot virus for infectivity but not for in vitro translation. Virology 109:428–430
    [Google Scholar]
  11. Contreras R. H., Cheroutre W., Degrave P., Fiers W. 1982; Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eucaryotic genes. Nucleic Acids Research 10:6353
    [Google Scholar]
  12. Daubert S. D., Bruening G. 1979; Genome associated proteins of comoviruses. Virology 98:246–250
    [Google Scholar]
  13. Ehresmann D. W., Schaffer F. L. 1977; RNA synthesised in calicivirus-infected cells is atypical of picornaviruses. Journal of Virology 22:572–576
    [Google Scholar]
  14. Ehresmann D. W., Schaffer F. L. 1979; Calicivirus intracellular RNA: fractionation of 18-22S RNA and lack of typical 5′-methylated caps on 36S and 22S San Miguel sea lion virus RNA. Virology 95:251–255
    [Google Scholar]
  15. Fretz M., Schaffer F. L. 1978; Calicivirus proteins in infected cells : evidence for a capsid polypeptide precursor. Virology 89:318–321
    [Google Scholar]
  16. Ghosh A., Rutgers T., Ke-Quiang M., Kaesberg P. 1981; Characterisation of the coat protein mRNA of southern bean mosaic virus and its relationship to the genomic RNA. Journal of Virology 39:87–92
    [Google Scholar]
  17. Greenwood F. C., Hunter W. M., Glover J. S. 1963; The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochemical Journal 89:114–123
    [Google Scholar]
  18. Harrison B. D., Barker H. 1978; Protease-sensitive structure needed forinfectivity ofnepovirus RNA. Journal of General Virology 40:711–715
    [Google Scholar]
  19. Hellen C. U. T., Cooper J. I. 1987; The genome-linked protein of cherry leaf roll virus. Journal of General Virology 68:2913–2917
    [Google Scholar]
  20. Herbert T. P., Brierley I., Brown T. D. K. 1996; Detection of the ORF3 polypeptide of feline calicivirus in infected cells and evidence for its expression from a single, functionally bicistronic, subgenomic mRNA. Journal of General Virology 77:123–127
    [Google Scholar]
  21. Inglis S. C., McGeoch D. J., Mahy B. W. J. 1977; Polypeptides specified by the influenza virus genome 2: assignment of protein coding functions to individual genome segments by in vitro translation. Virology 78:522–536
    [Google Scholar]
  22. Jackson R. J., Howell M. T., Kaminski A. 1990; The novel mechanisms of initiation of picornavirus RNA translation. Trends in Biological Sciences 15:477–483
    [Google Scholar]
  23. Jiang X., Wang M., Wang K., Estes M. K. 1993; Sequence and genomic organisation of Norwalk virus. Virology 195:51–61
    [Google Scholar]
  24. Kitamura N., Alder C. J., Rothberg P. G., Martinko J., Nathenson S. G., Wimmer E. 1980; The genome linked protein ofpicornaviruses. VII. Genetic mapping of poliovirus VPg by protein and RNA sequencing studies. Cell 21:295–302
    [Google Scholar]
  25. Koenig I., Fritsch C. 1982; A protein linked at the 57 end of satellite and genomic tomato black ring virus RNAs : study of in vitro translation after protease treatment. Journal of General Virology 60:343–353
    [Google Scholar]
  26. Kuhn R. J., Wimmer E. 1987; The replication of picornaviruses. In Molecular Biology of the Positive Strand RNA Viruses pp. 17–49 Mahy B. M. J., Rowlands D. J., Mayo M. A. Edited by London: Academic Press;
    [Google Scholar]
  27. Laemmli U. K. 1976; Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  28. Lee Y. N., Nomoto A., Detjen B. M., Wimmer E. 1977; A protein covalently linked to poliovirus genome RNA. Proceedings of the National Academy of Sciences, USA 74:59–63
    [Google Scholar]
  29. Mayo M. A., Barker H., Harrison B. D. 1982; Specificity and properties of the genome-linked proteins of nepoviruses. Journal of General Virology 59:149–162
    [Google Scholar]
  30. Meyers G., Wirblich C., Thiel H. 1991a; Rabbit haemorrhagic disease virus - molecular cloning and nucleotide sequencing of a calicivirus genome. Virology 184:664–676
    [Google Scholar]
  31. Meyers G., Wirblich C., Thiel H. 1991b; Genomic and subgenomic RNAs of rabbit haemorrhagic disease virus are both protein-linked and packaged into particles. Virology 184:677–686
    [Google Scholar]
  32. Murphy J. F., Rhoads R. E., Hunt A. G., Shaw J. G. 1990; The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology 178:285–288
    [Google Scholar]
  33. Neill J. D. 1990; Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Research 17:145–160
    [Google Scholar]
  34. Neill J. D. 1992; Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus : identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins. Virus Research 24:211–222
    [Google Scholar]
  35. Neill J. D., Mengeling W. L. 1988; Further characterisation of the virus-specific RNAs in feline calicivirus infected cells. Virus Research 11:59–72
    [Google Scholar]
  36. Neill J. D., Reardon I. M., Heinrickson R. L. 1991; Nucleotide sequence and expression of the capsid protein gene of feline calicivirus. Journal of Virology 65:5440–5447
    [Google Scholar]
  37. Nomoto A., Detjen B., Pozzatti R., Wimmer E. 1977a; The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268:208–213
    [Google Scholar]
  38. Nomoto A., Kitamura N., Golini F., Wimmer E. 1977b; The 5#x2032; terminal structure of poliovirion RNA and poliovirus mRNA differ only in the genome linked protein VPg. Proceedings of the National Academy of Sciences, USA 74:5345–5349
    [Google Scholar]
  39. Oh S., Sarnow P. 1993; Gene regulation: translational initiation by internal ribosome binding. Current Opinions in Genetics and Development 3:295–300
    [Google Scholar]
  40. Oshikamo R., Tohya Y., Kawaguchi Y., Tomonaga K., Maeda K., Takeda N., Utagawa E., Kai C., Mikami T. 1994; The molecular cloning and sequence of an open reading frame encoding for nonstructural proteins of feline calicivirus F4 strain isolated in Japan. Journal of Veterinary Medical Science 56:1093–1099
    [Google Scholar]
  41. Perez-Bencoff R., Gander M. 1978; In vitro translation of mengovirus RNA deprived of the terminally-linked (capping?) protein. FEBS Letters 96:306–312
    [Google Scholar]
  42. Riechmann J. L., Laín S., García J. A. 1989; The genome-linked protein and 5′ end RNA sequence of plum pox potyvirus. Journal of General Virology 70:2785–2789
    [Google Scholar]
  43. Sanger D. V., Rowlands D. J., Harris T. J. R., Brown F. 1977; Protein covalently linked to foot and mouth disease virus RNA. Nature 268:648–650
    [Google Scholar]
  44. Schaffer F. L., Ehresmann D. W., Fretz M. K., Soergel M. E. 1980; A protein, VPg, covalently linked to 36S calicivirus RNA. Journal of General Virology 47:215–220
    [Google Scholar]
  45. Sovnovstev S., Green K. Y. 1995; RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VPg for infectivity. Virology 210:383–390
    [Google Scholar]
  46. Stanley J., Rottier P., Davies J. W., Zabel P., van Kammen A. 1978; A protein linked to the 57 termini of both RNA components of the cowpea mosaic virus genome. Nucleic Acid Research 5:4505–4522
    [Google Scholar]
  47. Tam A. W., Smith M. M., Guerra M. E., Huang C., Bradley D. W., Fry K. E., Reyers G. R. 1991; Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185:120–131
    [Google Scholar]
  48. Thomas A. A. M., ter Haar E., Wellink J., Voorma H. O. 1991; Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. Journal of Virology 65:2953–2959
    [Google Scholar]
  49. Veerisetty V., Sehgal O. P. 1980; Proteinase K sensitive factor essential for the infectivity of Southern bean mosaic virus ribonucleic acid. Phytopathology 70:282–284
    [Google Scholar]
  50. Verver J., Le Gall O., van Kammen A., Wellink J. 1991; The sequence between nucleotides 161 and 512 of cowpea mosaic virus MRNA is able to support internal initiation of translation in vitro. Journal of General Virology 72:2339–2345
    [Google Scholar]
  51. Wimmer E. 1982; Genome-linked proteins of viruses. Cell 28:199–201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-5-1033
Loading
/content/journal/jgv/10.1099/0022-1317-78-5-1033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error