1887

Abstract

The herpes simplex virus type 1 (HSV) singlestranded DNA-binding protein (SSB, ICP8) stimulates the viral DNA polymerase (Pol) on an oligonucleotide-primed single-stranded DNA template. This stimulation is non-specific since other SSBs also increase Pol activity. However, only ICP8 was stimulatory when Pol activity was dependent upon priming by the viral helicase-primase complex. ICP8 also specifically stimulated the primer synthesis and ATPase activities of the helicase-primase. The mechanism of stimulation was different from that of Pol; helicase-primase stimulation required much lower amounts of ICP8 than the amount that saturates the DNA and optimally stimulates Pol. Furthermore, ICP8 did not act by removing secondary structure as stimulation also occurred on homopolymer templates. While the UL8 component of the helicase-primase is not required for enzymatic activities by a subassembly of the UL5 and UL52 proteins, only the holoenzyme (UL5/8/52) was stimulated by ICP8. These results identify a unique, functional interaction between the ICP8 SSB and the helicase-primase complex, mediated by the UL8 subunit.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-4-857
1997-04-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/4/9129659.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-4-857&mimeType=html&fmt=ahah

References

  1. Alberts B. M., Frey L. 1970; T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature 227:1313–1318
    [Google Scholar]
  2. Anderson R. A., Coleman J. E. 1975; Physiochemical properties of DNA binding proteins: gene 32 protein of T4 and Escherichia coli unwinding protein. Biochemistry 14:5485–5491
    [Google Scholar]
  3. Bayliss G. J., Marsden H. S., Hay J. 1975; Herpes simplex virus proteins: DNA-binding proteins in infected cells and in the virus structure. Virology 68:124–134
    [Google Scholar]
  4. Boehmer P. E., Lehman I. R. 1993; Physical interaction between the herpes simplex virus 1 origin-binding protein and single-stranded DNA-binding protein ICP8. Proceedings of the National Academy of Sciences, USA 90:8444–8448
    [Google Scholar]
  5. Boehmer P. E., Dodson M. S., Lehman I. R. 1993; The herpes simplex virus type-1 origin binding protein. DNA helicase activity. Journal of Biological Chemistry 268:1220–1225
    [Google Scholar]
  6. Boehmer P. E., Craigie M. C., Stow N. D., Lehman I. R. 1994; Association of origin binding protein and single strand DNA-binding protein, ICP8, during herpes simplex virus type 1 DNA replication in vivo. Journal of Biological Chemistry 269:29329–29334
    [Google Scholar]
  7. Calder J. M., Stow N. D. 1990; Herpes simplex virus helicase-primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Research 18:3573–3578
    [Google Scholar]
  8. Calder J. M., Stow E. C., Stow N. D. 1992; On the cellular localization of the components of the herpes simplex virus type 1 helicase-primase complex and the viral origin-binding protein. Journal of General Virology 73:531–538
    [Google Scholar]
  9. Challberg M. D. 1991; Herpes simplex virus DNA replication. Seminars in Virology 2:247–256
    [Google Scholar]
  10. Crute J. J., Lehman I. R. 1991; Herpes simplex virus-1 helicase- primase. Physical and catalytic properties. Journal of Biological Chemistry 266:4484–4488
    [Google Scholar]
  11. Crute J. J., Mocarski E. S., Lehman I. R. 1988; A DNA helicase induced by herpes simplex virus type 1. Nucleic Acids Research 16:6585–6596
    [Google Scholar]
  12. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus 1 helicase-primase : a complex of three herpes-encoded gene products. Proceedings of the National Academy of Sciences, USA 86:2186–2189
    [Google Scholar]
  13. Dodson M. S., Lehman I. R. 1991; Association ofDNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proceedings of the National Academy of Sciences, USA 88:1105–1109
    [Google Scholar]
  14. Dodson M. S., Crute J. J., Bruckner R. C., Lehman I. R. 1989; .Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. Journal of Biological Chemistry 264:20835–20838
    [Google Scholar]
  15. Dracheva S., Koonin E. V., Crute J. J. 1994; Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. Journal of Biological Chemistry 270:14148–14153
    [Google Scholar]
  16. Elias P., O’Donnell M. E., Mocarski E. S., Lehman I. R. 1986; A DNA binding protein specific for an origin of replication of herpes simplex virus type 1. Proceedings of the National Academy of Sciences, USA 83:6322–6326
    [Google Scholar]
  17. Fierer D. S., Challberg M. D. 1992; Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. Journal of Virology 66:3986–3995
    [Google Scholar]
  18. Gallo M. L., Dorsky D. I., Crumpacker C. S., Parris D. S. 1989; The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. Journal of Virology 63:5023–5029
    [Google Scholar]
  19. Gill S. C., von Hippel P. H. 1989; Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry 182:319–326
    [Google Scholar]
  20. Gottlieb J., Marcy A. I., Coen D. M., Challberg M. D. 1990; The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. Journal of Virology 64:5976–5987
    [Google Scholar]
  21. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related superfamilies of putative helicases involved in replication, recombination, repair, and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  22. Hamatake R. K., Bifano M., Tenney D. J., Hurlburt W. W., Cordingley M. G. 1993; The herpes simplex virus type 1 DNA polymerase accessory protein, UL42, contains a functional protease-resistant domain. Journal of General Virology 74:2181–2189
    [Google Scholar]
  23. Hernandez T. R., Lehman I. R. 1990; Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. Journal of Biological Chemistry 265:11227–11232
    [Google Scholar]
  24. Huberman J. A., Kornberg A., Alberts B. M. 1971; Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. Journal of Molecular Biology 62:39–52
    [Google Scholar]
  25. Jensen D. E., Kelly R. C., von Hippel P. H. 1976; DNA ′melting′ proteins. II. Effects of bacteriophage T4 gene 32-protein binding on the conformation and stability of nucleic acid structures. Journal of Biological Chemistry 251:7215–7228
    [Google Scholar]
  26. Klinedinst D. K., Challberg M. D. 1994; Helicase-primase complex of herpes simplex virus type 1 : a mutation in the UL52 subunit abolishes primase activity. Journal of Virology 68:3693–3701
    [Google Scholar]
  27. Kong D., Richardson C. C. 1996; Single-stranded DNA binding protein and DNA helicase of bacteriophage T7 mediate homologous DNA strand exchange. EMBO Journal 15:2010–2019
    [Google Scholar]
  28. Kornberg A., Baker T. A. 1992 DNA Replication, 2nd edn. New York: W. H. Freeman;
    [Google Scholar]
  29. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. 1979; An improved assay for nanomole amounts of inorganic phosphate. Analytical Biochemistry 100:95–97
    [Google Scholar]
  30. Le Gac N. T., Villani G., Hoffman J. S., Boehmer P. E. 1996; The UL8 subunit of the herpes simplex virus type-1 DNA helicase-primase optimizes utilization of DNA templates covered by the homologous single-strand DNA-binding protein ICP8. Journal of Biological Chemistry 271:21645–21651
    [Google Scholar]
  31. Liu C. C., Alberts B. M. 1981; Characterization of the DNA- dependent GTPase activity T4 gene 41 protein, an essential component of the T4 bacteriophage DNA replication apparatus. Journal of Biological Chemistry 256:2813–2820
    [Google Scholar]
  32. Lohman T. M., Overman L. B. 1985; Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. Journal of Biological Chemistry 260:3594–3603
    [Google Scholar]
  33. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P., Challberg M. D. 1988; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  34. McLean G. W., Abbotts A. P., Parry M. E., Marsden H. S., Stow N. D. 1994; The herpes simplex virus type 1 origin-binding protein interacts specifically with the viral UL8 protein. Journal ofGeneral Virology 75:2699–2706
    [Google Scholar]
  35. Makhov A. M., Boehmer P. E., Lehman I. R., Griffith J. D. 1996; The herpes simplex virus type 1 origin-binding protein carries out origin specific DNA unwinding and forms unwound stem-loop structures. EMBO Journal 15:1742–1750
    [Google Scholar]
  36. Mendelman L. V., Richardson C. C. 1991; Requirements for primer synthesis by bacteriophage T7 63-kDa gene 4 protein. Roles of template sequence and T7 56-kDa gene 4 protein. Journal of Biological Chemistry 266:23240–23250
    [Google Scholar]
  37. Nakai H., Richardson C. C. 1988; The effect of the T7 and Escherichia coli DNA-binding proteins at the replication fork of bacteriophage T7. Journal of Biological Chemistry 263:9831–9839
    [Google Scholar]
  38. O’Donnell M. E., Elias P., Lehman I. R. 1987; Processive replication of single-stranded DNA templates by the herpes simplex virus-induced DNA polymerase. Journal of Biological Chemistry 262:4252–4259
    [Google Scholar]
  39. Olivo P. D., Nelson N. J., Challberg M. D. 1988; Herpes simplex virus type 1 gene products required for DNA replication: identification and overexpression. Proceedings of the National Academy of Sciences, USA 85:5414–5418
    [Google Scholar]
  40. Parry M. E., Stow N. D., Marsden H. S. 1993; Purification and properties of the herpes simplex virus type 1 UL8 protein. Journal of General Virology 74:607–612
    [Google Scholar]
  41. Powell K. L., Littler E., Purifoy D. J. 1981; Nonstructural proteins of herpes simplex virus. II. Major virus-specific DNA-binding protein. Journal of Virology 39:894–902
    [Google Scholar]
  42. Purifoy D. J. M., Lewis R. B., Powell K. L. 1977; Identification of the herpes simplex virus DNA polymerase gene. Nature 269:621–623
    [Google Scholar]
  43. Ruyechan W. T., Weir A. C. 1984; Interaction with nucleic acids and stimulation of the viral DNA polymerase by the herpes simplex virus type 1 major DNA-binding protein. Journal of Virology 52:727–733
    [Google Scholar]
  44. Sherman G., Gottlieb J., Challberg M. D. 1992; The UL8 subunit of the herpes simplex virus helicase-primase complex is required for efficient primer utilization. Journal of Virology 66:4884–4892
    [Google Scholar]
  45. Tenney D. J., Hurlburt W. W., Micheletti P. A., Bifano M., Hamatake R. K. 1994; The UL8 component of the herpes simplex virus helicase-primase complex stimulates primer synthesis by a subassembly of the UL5 and UL52 components. Journal of Biological Chemistry 269:5030–5035
    [Google Scholar]
  46. Tenney D. J., Sheaffer A. K., Hurlburt W. W., Bifano M., Hamatake R. K. 1995; Sequence-dependent primer synthesis by the herpes simplex virus helicase-primase complex. Journal of Biological Chemistry 270:9129–9136
    [Google Scholar]
  47. Weir H. M., Calder J. M., Stow N. D. 1989; Binding of the herpes simplex virus type 1 UL9 gene product to an origin of viral DNA replication. Nucleic Acids Research 17:1409–1425
    [Google Scholar]
  48. Weller S. K. 1991; Genetic analysis of HSV genes required for genome replication. In Herpesvirus Transcription and its Regulation pp. 105–135 Wagner E. K. Edited by Boca Raton: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-4-857
Loading
/content/journal/jgv/10.1099/0022-1317-78-4-857
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error