1887

Abstract

The influenza virus M2 protein, target of the antiviral drugs amantadine and rimantadine, forms a proton channel which functions during virus uncoating and maturation by modifying the pH in virions as well as in trans-Golgi vesicles. We studied the influence of different ionic gradients on the inhibition of the proton translocation activity of isolated, baculo- virus-expressed M2 protein reconstituted into liposomes. Two distinct patterns of inhibition were observed. A group of amphiphilic amines including amantadine, cyclooctylamine and rimantadine inhibited M2 effectively in the presence of physiological Na concentrations. The 10-fold greater activity of rimantadine over amantadine and the 100-fold stronger effect of cyclooctylamine compared to cyclopentylamine matched the relative activities in influenza virus-infected cells. A com-pletely different inhibitory pattern emerged for the polyamines spermine, spermidine and putrescine. Polyamines have recently been identified as the ‘intrinsic’ rectifiers of a class of potassium channels and shown to interact with acidic amino acid residues lining and flanking the channel pore. In the presence of a physiological Na /K gradient their minimal inhibitory concentrations for influenza virus M2 protein were 100, 400 and 500 µM, polyamine levels reported to exist in oocytes. In conditions depleted for Na , polyamines inhibited M2 at concentrations two to three orders of magnitude lower. The data suggest that influenza virus M2 protein possesses a binding site for polyamines, distinct from the amantadine binding site, which is normally masked by Na and which could be targeted by selective antiviral inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-4-767
1997-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/4/9129648.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-4-767&mimeType=html&fmt=ahah

References

  1. Appleyard G., Maber H. B. 1975; A plaque assay for the study of influenza virus inhibitors. Journal of Antimicrobial Chemotherapy 1: Suppl 49–53
    [Google Scholar]
  2. Attali B., Guillemare E., Lesage F., Honoré E., Romey G., Lazdunski M., Barhanin J. 1993; The protein IsK is a dual activator of K+ and Cl channels. Nature 365:850–852
    [Google Scholar]
  3. Belshe R. B., Hay A. J. 1989; Drug resistance and mechanism of action on influenza virus. Journal of Respiratory Diseases Suppl S52–S61
    [Google Scholar]
  4. Bron R., Kendal A. P., Klenk H. D., Wilschut J. 1993; Role of the M2 protein in influenza virus membrane fusion: effects of amantadine and monensin on fusion kinetics. Virology 195: 808–811
    [Google Scholar]
  5. Bukrinskaya A. G., Vorkunova N. K., Kornilaeva G.V, Vorkunova G. K. 1982; Influenza virus uncoating in infected cells and effects of rimantadine. Journal of General Virology 60:49–59
    [Google Scholar]
  6. Chizhmakov I. V., Geraghty F. M., Ogden D. C., Hayhurst A., Antoniou M., Hay A. J. 1996; Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukemia cells. Journal of Physiology 494:329–336
    [Google Scholar]
  7. Ciampor F., Bayley P. M., Nermut M. V., Hirst E. M. A., Sugrue R. J., Hay A. J. 1992a; Evidence that the amantadine-induced, M2- mediated conversion of influenza A virus haemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology 188:14–24
    [Google Scholar]
  8. Ciampor F., Thompson C. A., Hay A. J. 1992b; Regulation of pH by the M2 protein of influenza A viruses. Virus Research 22:247–258
    [Google Scholar]
  9. Dencher N. A., Burghaus P. A., Grzesiek S. 1986; Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Methods in Enzymology 127:746–760
    [Google Scholar]
  10. Duff K. C., Cudmore A. J., Bradshaw J. P. 1993; The location of amantadine hydrochloride and free base within phospholipid multilayers : a neutron and X-ray diffraction study. Biochimica et Biophysica Acta 1 145:149–156
    [Google Scholar]
  11. Duff K. C., Gilchrist P. J., Saxena A. M., Bradshaw J. P. 1994; Neutron diffraction study reveals the site of amantadine blockade in the influenza A M2 ion channel. Virology 202:287–293
    [Google Scholar]
  12. Fakler B., Brandler U., Bond C., Glowatzki E., Konig C., Adelman J. P., Zenner H. -P., Ruppersberg J. P. 1994; A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Letters 356:199–203
    [Google Scholar]
  13. Fromherz P., Masters B. 1974; Interfacial pH at electrically charged lipid monolayers investigated by the lipoid pH-indicator method. Biochimica et Biophysica Acta 356:270–275
    [Google Scholar]
  14. Ficker E., Taglialatela M., Wible A. M., Henley C. M., Brown A. M. 1994; Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072
    [Google Scholar]
  15. Garcia M. L., Kitada M., Eisenstein H. C., Krulwich T. A. 1984; Voltage-dependent proton fluxes in liposomes. Biochimica et Biophysica Acta 766:109–115
    [Google Scholar]
  16. Grambas S., Hay A. J. 1992; Maturation of influenza A virus haemagglutinin - estimates of the pH encountered during transport and its regulation by the M2 protein. Virology 190:11–18
    [Google Scholar]
  17. Grambas S., Bennet M. S., Hay A. J. 1992; Influence of amantadine- resistance mutations on the pH regulatory function of the M2 protein of influenza A viruses. Virology 191:541–549
    [Google Scholar]
  18. Hay A. J. 1989; The mechanism of action of amantadine and rimantadine against influenza viruses. In Concepts in Virus Pathogenesis 3 pp 361–367 Notkins A. L., Oldstone M. B. A. Edited by New York: Springer Verlag;
    [Google Scholar]
  19. Hay A. J. 1992; The action of adamantanamines against influenza A viruses : inhibition of the M2 ion channel protein. Seminars in Virology 3:21–30
    [Google Scholar]
  20. Hay A. J., Zambon M. 1984; Multiple actions ofamantadine against influenza virus. In Antiviral Drugs and Interferon: The Molecular Basis of Their Activity pp 301–315 Boston: Martinus Nijhoff;
    [Google Scholar]
  21. Hay A. J., Wolstenholme A. J., Skehel J. J., Smith M. H. 1985; Themolecular basis of the specific anti-influenza action of amantadine. EMBO Journal 4:3021–3024
    [Google Scholar]
  22. Hay A. J., Zambon M. C., Wolstenholme A. J., Skehel J. J., Smith M. H. 1986; Molecular basis of resistance of influenza A viruses to amantadine. Journal of Antimicrobial Chemotherapy 18: Suppl. B 3021–3024
    [Google Scholar]
  23. Heider H. 1986 Zur Wirkung von Adamantanderivaten und Anti-parkinsonmitteln gegen Influenza- und Masernviren M.D. thesis Humboldt-Universität zu Berlin, Germany:
    [Google Scholar]
  24. Indulen M. K., Polis J. J., Kalnina V. A., Ryasantzeva G. M., Dsegudse D. R., Eglite I. E., Zamyatina N. A., Kanninikova N. A., Feldblum F. L. 1979a; Antiviral activity of new amantadine derivatives. In Antiviral Activity and Mode of Action of Chemical Compounds pp 41–48 Kukaine R. A., Muzenieze A. J., Indulen M. K., Duk A. E. Edited by Riga; Sinatne: In Russian
    [Google Scholar]
  25. Indulen M. K., Polis J. J., Kanele I. A., Ryasantzeva G. M., Dsegudse D. R., Kalnina V. A., Grabe I. J. 1979b; Antiviral activity of a series of rimantadine derivatives. In Antiviral Activity and Mode of Action of Chemical Compounds pp 34–40 Kukaine R. A., Muzenieze A. J., Indulen M. K., Duk A. E. Edited by Riga; Sinatne: In Russian
    [Google Scholar]
  26. Kato N., Eggers H. J. 1969; Inhibition of uncoating of fowl plague virus by 1-adamantanamine hydrochloride. Virology 37:632–641
    [Google Scholar]
  27. Lamb R. A., Holsinger L. J., Pinto L. H. 1994; The influenza A virus M2 ion channel protein and its role in the influenza virus life cycle. In Cellular Receptors for Animal Viruses pp 303–321 Wimmer E. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Lopatin A. N., Makhina E. N., Nichols C. G. 1994; Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369
    [Google Scholar]
  29. Lu Z., MacKinnon R. 1994; Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371:243–246
    [Google Scholar]
  30. Martin K., Helenius A. 1991; Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import. Cell 67:117–130
    [Google Scholar]
  31. Ohkuma S., Poole B. 1978; Fluorescence probe measurement of intralysosomal pH in living cells and the perturbation of pH by various agents. Proceedings of the National Academy of Sciences USA: 753327–3331
    [Google Scholar]
  32. Ohuchi M., Cramer A., Vey M., Ohuchi R., Garten W., Klenk H. -D. 1994; Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein. Journal of Virology 68: 920–926
    [Google Scholar]
  33. Osbourne H. B., Mulner-Lorillon O., Marot O., Belle J. 1989; Polyamine levels during Xenopus laevis oogenesis : a role in oocyte competence to meiotic resumption. Biochemical and Biophysical Research Communications 158:520–526
    [Google Scholar]
  34. Pinto L. H., Holsinger L. J., Lamb R. A. 1992; Influenza virus M2 protein has ion channel activity. Cell 69: 517–528
    [Google Scholar]
  35. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO Journal 5:41–49
    [Google Scholar]
  36. Sansom M. S., Kerr I. D. 1993; Influenza virus M2 protein: a molecular modelling study of the ion channel. Protein Engineering 6:65–74
    [Google Scholar]
  37. Schroeder C., Ford C. F., Wharton S. A., Hay A. J. 1994; Functional reconstitution in lipid vesicles of influenza virus M2 protein expressed by baculovirus : evidence for proton transfer activity. Journal of General Virology 75:3477–3484
    [Google Scholar]
  38. Shimbo K., Brassard D. L., Lamb R. A., Pinto L. H. 1995; Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes. Biophysical Journal 69:1819–1829
    [Google Scholar]
  39. Shimbo K., Brassard D. L., Lamb R. A., Pinto L. H. 1996; Ion selectivity and activation of the M2 ion channel of influenza virus. Biophysical Journal 70:1335–1346
    [Google Scholar]
  40. Stanfield P. R., Davies N. W., Shelton I. A., Sutcliffe M. J., Khan I. A., Brammar W. J., Conley E. C. 1994; A single aspartate residue is involved in both intrinsic gating and blockage by Mg of the inward rectifier IRK1. Journal of Physiology 478:1–6
    [Google Scholar]
  41. Sugrue R. J., Bahadur G., Zambon M. C., Hall-Smith M., Douglas A. R., Hay A. J. 1990; Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO Journal 9: 3469–3476
    [Google Scholar]
  42. Taglialatela M., Ficker E., Wible B. A., Brown A. M. 1995; C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO Journal 14:5532–5541
    [Google Scholar]
  43. Takeuchi K., Lamb R. A. 1994; Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. Journal of Virology 68:911–919
    [Google Scholar]
  44. Wang C. K., Lamb R. A., Pinto L. H. 1994; Direct measurement of the influenza A virus M2 protein ion channel activity in mammalian cells. Virology 205:133–140
    [Google Scholar]
  45. Wharton S. A., Hay A. J., Sugrue R. J., Skehel J. J., Weis W. I., Wiley D. C. 1990; Membrane fusion by influenza viruses and the mechanism of action of amantadine. In Use ofX-Ray Crystallography in the Design of Antiviral Agents pp 1–12 Laver W. G., Air G. M. Edited by New York: Academic Press;
    [Google Scholar]
  46. Wharton S. A., Belshe R. B., Skehel J. J., Hay A. J. 1994; Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. Journal of General Virology 75:945–948
    [Google Scholar]
  47. Wible B. A., Taglialatela M., Ficker E., Brown A. M. 1994; Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371:246–249
    [Google Scholar]
  48. Zhirnov O. P. 1990; Solubilization of matrix protein M1/M from virion occurs at different pH for orthomyxo- and paramyxoviruses. Virology 176:274–279
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-4-767
Loading
/content/journal/jgv/10.1099/0022-1317-78-4-767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error