No evidence for quasispecies populations during persistence of the coronavirus mouse hepatitis virus JHM: sequence conservation within the surface glycoprotein gene S in Lewis rats Free

Abstract

The surface glycoprotein S (spike) of coronaviruses is believed to be an important determinant of virulence and displays extensive genetic polymorphism in cell culture isolates. This led us to consider whether the observed heterogeneity is reflected by a quasispecies distribution of mutated RNA molecules within the infected organ. Corona- virus infection of rodents is a useful model system for investigating the pathogenesis of virus-induced central nervous system (CNS) disease. Here, we investigated whether genetic changes in the S gene occurred during virus persistence . We analysed the variability of S gene sequences directly from the brain tissue of Lewis rats infected with the coronavirus mouse hepatitis virus (MHV) variant JHM-Pi using RT-PCR amplification methods. The S gene sequence displayed a remarkable genetic stability . No evidence for a quasispecies distribution was found by sequence analysis of amplified S gene fragments derived from the CNS of Lewis rats. Furthermore, the S gene also remained conserved under the selection pressure of a neutralizing antibody. Only a few mutations predicted to result in amino acid changes were detected in single clones. The changes were not represented in the consensus sequence. These results indicate that to retain functional proteins under the constraints of a persistent infection , conservation of sequence can be more important than heterogeneity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-4-747
1997-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/4/9129646.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-4-747&mimeType=html&fmt=ahah

References

  1. Adami C., Pooly J., Glomb J., Stecker E., Fazal F., Fleming J. O., Baker S. C. 1995; Evolution of mouse hepatitis virus (MHV) during chronic infection: quasispecies nature of the persisting MHV RNA. Virology 209:337–346
    [Google Scholar]
  2. Baczko K., Lampe J., Liebert U. G., Brinckmann U., terMeulen V., Pardowitz I., Budka H., Cosby L., Isserte S., Rima B. K. 1993; Clonal expansion ofhypermutated measles virus in a SSPE brain. Virology 197:188–195
    [Google Scholar]
  3. Banner L. R., Keck G. K., Lai M. M. C. 1990; A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology 175: 548–555
    [Google Scholar]
  4. Barac-Latas V., Suchanek G., Breitschopf H., Stühler A., Wege H., Lassmann H. 1997; Patterns of oligodendrocyte pathology in coronavirus induced subacute demyelinating encephalomyelitis in the Lewis rat. Glia in press
    [Google Scholar]
  5. Baybutt H. N., Wege H., Carter M. J., ter Meulen V. 1984; Adaptation of coronavirus JHM to persistent infection of murine Sac(−) cells. Journal of General Virology 65: 915–924
    [Google Scholar]
  6. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction method for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  7. Cattaneo R., Billeter M. A. 1992; Mutations and A/I hypermutations in measles virus persistent infections. Current Topics in Microbiology and Immunology 176: 63–74
    [Google Scholar]
  8. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  9. Dalziel R. G., Lampert P. W., Talbot P. J., Buchmeier M. J. 1986; Site-specific alterations of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. Journal of Virology 59:463–471
    [Google Scholar]
  10. Domingo E., Diez J., Martinez M. A., Hernandez J., Holguin A., Borrego B., Mateu M. G. 1993; New observations on antigenic diversification of RNA viruses. Antigenic variation is not dependent on immune selection. Journal of General Virology 74:2039–2045
    [Google Scholar]
  11. Fazakerley J. K., Parker S. E., Bloom F., Buchmeier M. J. 1992; The V5A13. 1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology 187:178–188
    [Google Scholar]
  12. Fleming J. O., Trousdale M. D., El-Zaatari F. A. K., Stohlman S. A., Weiner L. P. 1986; Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. Journal of Virology 58:869–875
    [Google Scholar]
  13. Flory E., Stühler A., Barac-Latas V., Lassmann H., Wege H. 1995; Coronavirus-induced encephalomyelitis : balance between protection and immune pathology depends on the immunization schedule with spike protein S. Journal of General Virology 76:873–879
    [Google Scholar]
  14. Fu K., Baric R. 1992; Evidence for variable rates of recombination in the MHV genome. Virology 189:88–102
    [Google Scholar]
  15. Gallagher T. M., Parker S. E., Buchmeier M. J. 1990; Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the aminoterminal half of the spike glycoprotein. Journal of Virology 64:731–741
    [Google Scholar]
  16. Grosse B., Siddell S. 1994; Singl e amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by the S1 subunit specific monoclonal antibody. Virology 202:814–824
    [Google Scholar]
  17. Gubler U., Hoffmann B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  18. Hertig C., Stalder H., Peterhans E. 1995; Genetic heterogeneity within the coding regions of E2 and NS3 in strains of bovine viral diarrhea virus. Gene 153:191–195
    [Google Scholar]
  19. Hofmann M. A., Sethna P. B., Brian D. A. 1990; Bovine corona- virus mRNA replication continues throughout persistent infection in cell culture. Journal of Virology 64:4110–4114
    [Google Scholar]
  20. Holland J. J. 1992; Genetic diversity ofRNA viruses. Current Topics In Microbiology and Immunology 176:1–20
    [Google Scholar]
  21. Hultman T., Stahl S., Hornes E., Uhlen M. 1989; Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Research 17:4937–4946
    [Google Scholar]
  22. Jia W., Karaca K., Parrish C. R., Naqi S. A. 1995; A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Archives of Virology 140:259–271
    [Google Scholar]
  23. Jukes T. H., King J. L. 1979; Evolutionary nucleotide replacements in DNA. Nature 281:605–606
    [Google Scholar]
  24. Komase K., Rima B. K., Pardowitz I., Kunz C., Billeter M. A., terMeulen V., Baczko K. 1995; A comparison of nucleotide sequences of measles virus L genes derived from viruses and SSPE brain tissues. Virology 208:795–799
    [Google Scholar]
  25. Körner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S. G., Wege H. 1991; Nucleocapsid or spike protein-specific CD4+ T-lymphocytes protect against coronavirus- induced encephalomyelitis in the absence of CD8+ T-cells. Journal of Immunology 147:2317–2323
    [Google Scholar]
  26. Kottier S., Cavanagh D., Britton P. 1995; Experimental evidence ofrecombination in coronavirus infectious bronchitis virus. Virology 213:569–580
    [Google Scholar]
  27. Kyuwa S., Stohlman S. A. 1990; Pathog enesis of a neurotropic murine coronavirus, strain JHM in the central nervous system of mice. Seminars in Virology 1:273–280
    [Google Scholar]
  28. LaMonica N., Banner L. R., Morris V. L., Lai M. M. C. 1991; Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronavirus JHM. Virology 182:883–888
    [Google Scholar]
  29. Li W. H., Wu C. I., Luo C. C. 1985; A new method for estimating synonymous and non synonymous rates of nucleotide substitutions considering the relative likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2:150–170
    [Google Scholar]
  30. Liebert U. G., Flanagan S. G., Löffler S., Baczko K., terMeulen V., Rima B. K. 1994; Antig enic determinants of measles virus hemagglutinin associated with neurovirulence. Journal of Virology 68:1486–1493
    [Google Scholar]
  31. Morris V. L., Tieszer C., Machinnon J., Percy D. 1989; Characterisation of coronavirus JHM variants isolated from Wistar Furth rats with a viral induced demyelinating disease. Virology 169:127–136
    [Google Scholar]
  32. Parker S. E., Gallagher T. M., Buchmeier M. J. 1989; Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology 173:664–673
    [Google Scholar]
  33. Routledge E., Stauber R., Pfleiderer M., Siddell S. G. 1991; Analysis of murine coronavirus glycoprotein functions using monoclonal antibodies. Journal of Virology 65:254–264
    [Google Scholar]
  34. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA: 745463–5467
    [Google Scholar]
  36. Schmidt I., Skinner M. A., Siddell S. G. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of the coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  37. Siddell S. G. 1995 editor The Coronaviridae. New York & London: Plenum Press;
    [Google Scholar]
  38. Stühler A., Wege H., Siddell S. G. 1991; Localization of antigenic sites on the surface glycoprotein of mouse hepatitis virus. Journal of General Virology 72:1655–1658
    [Google Scholar]
  39. Taguchi F., Siddell S. G., Wege H., ter Meulen V. 1985; Characterization of a variant virus selected in rat brains after infection by coronavirus mouse hepatitis virus JHM. Journal of Virology 54:429–435
    [Google Scholar]
  40. Vartanian J. P., Meyerhans A., Henry M., Wain-Hobson S. 1992; High resolution structure of an HIV-1 quasispecies: identification of novel coding sequences. AIDS 6:1095–1098
    [Google Scholar]
  41. Wang F. I., Fleming J. O., Lai M. M. C. 1992; Sequence analysis of the spike protein gene of murine coronavirus variants : study of genetic sites affecting neuropathogenicity. Virology 186:742–749
    [Google Scholar]
  42. Wang L., Junker D., Hock L., Ebiary E., Collison E. W. 1994; Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus. Virus Research 34:327–338
    [Google Scholar]
  43. Watanabe R., Wege H., ter Meulen V. 1983; Adopt ive transfer of EAE-like lesions by BMP stimulated lymphocytes from rats with coronavirus-induced demyelinating encephalomyelitis. Nature 305:150–153
    [Google Scholar]
  44. Wege H. 1995; Immunopathological aspects of coronavirus infections. Springer Seminars in Immunopathology 17:133–148
    [Google Scholar]
  45. Wege H., Siddell S. G., ter Meulen V. 1982; The biology and pathogenesis of coronaviruses. Current Topics in Microbiology and Immunology 99:165–200
    [Google Scholar]
  46. Wege H., Dörries R., Wege H. 1984a; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
  47. Wege H., Watanabe R., ter Meulen V. 1984b; Relapsing subacute demyelinating encephalomyelitis in rats in the course of coronavirus JHM infection. Journal of Neuroimmunology 6:325–336
    [Google Scholar]
  48. Wege H., Winter J., Meyermann R. 1988; The peplomer protein E2 of coronavirus JHM as a determinant of neurovirulence : definition of critical epitopes by variant analysis. Journal of General Virology 69:87–98
    [Google Scholar]
  49. Wong T. C., Ayata M., Ueda S., Hirano A. 1991; Role of biased hypermutation on evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. Journal of Virology 65:2191–2199
    [Google Scholar]
  50. Yokomori K., Stohlman S. A., Lai M. M. C. 1993; The detection and characterization of multiple hemagglutinin-esterase (HE)-defective viruses in the mouse brain during subacute demyelination induced by mouse hepatitis virus. Virology 192:170–178
    [Google Scholar]
  51. Zimprich F., Winter J., Wege H., Lassmann H. 1991; Coronavirus induced primary demyelination: indications for the involvement of a humoral immune response. Neuropathology and Applied Neurobiology 17:469–484
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-4-747
Loading
/content/journal/jgv/10.1099/0022-1317-78-4-747
Loading

Data & Media loading...

Most cited Most Cited RSS feed