@article{mbs:/content/journal/jgv/10.1099/0022-1317-78-4-747, author = "Stühler, Albert and Flory, Egbert and Wege, Hanna and Lassmann, Hans and Wege, Helmut", title = "No evidence for quasispecies populations during persistence of the coronavirus mouse hepatitis virus JHM: sequence conservation within the surface glycoprotein gene S in Lewis rats", journal= "Journal of General Virology", year = "1997", volume = "78", number = "4", pages = "747-756", doi = "https://doi.org/10.1099/0022-1317-78-4-747", url = "https://www.microbiologyresearch.org/content/journal/jgv/10.1099/0022-1317-78-4-747", publisher = "Microbiology Society", issn = "1465-2099", type = "Journal Article", abstract = "The surface glycoprotein S (spike) of coronaviruses is believed to be an important determinant of virulence and displays extensive genetic polymorphism in cell culture isolates. This led us to consider whether the observed heterogeneity is reflected by a quasispecies distribution of mutated RNA molecules within the infected organ. Corona- virus infection of rodents is a useful model system for investigating the pathogenesis of virus-induced central nervous system (CNS) disease. Here, we investigated whether genetic changes in the S gene occurred during virus persistence in vivo. We analysed the variability of S gene sequences directly from the brain tissue of Lewis rats infected with the coronavirus mouse hepatitis virus (MHV) variant JHM-Pi using RT-PCR amplification methods. The S gene sequence displayed a remarkable genetic stability in vivo. No evidence for a quasispecies distribution was found by sequence analysis of amplified S gene fragments derived from the CNS of Lewis rats. Furthermore, the S gene also remained conserved under the selection pressure of a neutralizing antibody. Only a few mutations predicted to result in amino acid changes were detected in single clones. The changes were not represented in the consensus sequence. These results indicate that to retain functional proteins under the constraints of a persistent infection in vivo, conservation of sequence can be more important than heterogeneity.", }