The E1A N terminus (aa 1-29) of the highly oncogenic adenovirus type 12 harbours a trans-activation function not detectable in the non-oncogenic serotype 2 Free

Abstract

Early region 1A (E1A) of adenoviruses (Ad) codes for potent activator and repressor molecules which are involved in the regulation of viral and cellular gene expression. Gene regulatory functions of E1A proteins are mainly located in their conserved regions (CR) 1 to 3. In addition to the CRs, specific amino acids (aa) of the N-terminal end play an important role in some gene regulatory functions. We describe here the identification and characterization of a novel trans-activation domain which is located in the non-conserved N-terminal end of Ad12 E1A, namely aa 1–29. Fusion of this region to the DNA-binding domain of the yeast transcription factor Gal4 generates a strong trans-activator which induces gene expression of reporter constructs in dependence on Gal4 DNA-binding sites. Furthermore, transient expression assays using the physiological E1A-responsive adenoviral E2 early promoter revealed that the N terminus is involved in its activation. The gene regulatory function of the N terminus is specific for E1A proteins of the highly oncogenic serotype Ad12, as the respective E1A N terminus of the non-oncogenic serotype Ad2 is unable to activate the expression of the reporter gene as Gal4 fusion protein. Moreover, deletion mutant analyses demonstrate that Ad12 E1A proteins carry three independently acting activation domains: (1) aa 1–29, (2) CR1 and (3) CR3.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-2-413
1997-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/2/9018064.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-2-413&mimeType=html&fmt=ahah

References

  1. Arany Z., Newsome D., Oldread E., Livingston D. M., Eckner R. 1995; A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374:81–84
    [Google Scholar]
  2. Berk A. J., Lee F., Harrison T., Williams J., Sharp P. A. 1979; Preearly adenovirus 5 product regulates synthesis of early viral messenger RNAs. Cell 17:935–944
    [Google Scholar]
  3. Bondesson M., Mannervik M., Akusjärvi G., Svensson C. 1994; An adenovirus E1A transcriptional repressor domain functions as an activator when tethered to a promoter. Nucleic Acids Research 22:3053–3060
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  5. Brockmann D., Esche H. 1995; Regulation ofviral and cellular gene expression by E1A proteins encoded by the oncogenic adenovirus type 12. Current Topics in Microbiology and Immunology 199/III:82–112
    [Google Scholar]
  6. Brockmann D., Tries B., Esche H. 1990; Isolation and characterization of novel adenovirus type 12 E1A mRNAs by cDNA PCR technique. Virology 179:585–590
    [Google Scholar]
  7. Byers Kraus V., Inostroza J. A., Yeung K., Reinberg D., Nevins J. R. 1994; Interaction of the Dr1 inhibitory factor with the TATA binding protein is disrupted by adenovirus E1A. Proceedings of the National Academy of Sciences, USA 91:6279–6282
    [Google Scholar]
  8. Byrd P. J., Grand R. J., Gallimore P. H. 1988; Differential transformation of primary human embryo retinal cells by adenovirus E1 regions and combinations of E1A + ras. Oncogene 2:477–484
    [Google Scholar]
  9. Chen J. -L., Attardi L. D., Verrijzer C. P., Yokomori K., Tjian R. 1994; Assembly of recombinant TFIID reveals differential co-activator requirements for distinct transcriptional activators. Cell 79:93–105
    [Google Scholar]
  10. Chevray P. M., Nathans D. 1992; Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proceedings of the National Academy of Sciences, USA 89:5789–5793
    [Google Scholar]
  11. Egan C., Jelsma T. N., Howe J. A., Bayley S. T., Ferguson B., Branton P. E. 1988; Mapping of cellular protein-binding sites on the products of early region 1A of human adenovirus type 5. Molecular and Cellular Biology 8:3955–3959
    [Google Scholar]
  12. Felgner P., Ringold G. 1989; Cationic liposome-mediated transfection. Nature 337:387–388
    [Google Scholar]
  13. Ferguson B., Krippl B., Andrisani O., Jones N., Westphal H., Rosenberg M. 1985; E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Molecular and Cellular Biology 5:2653–2661
    [Google Scholar]
  14. Gedrich R. W., Bayley S. T., Engel D. A. 1992; Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation. Journal of Virology 66:5849–5859
    [Google Scholar]
  15. Gorman C., Merlino G., Willingham M., Pastan I., Howard B. 1982; The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eucaryotic cells by DNA-mediated transfection. Proceedings of the NationalAcademy ofSciences, USA 79:6777–6781
    [Google Scholar]
  16. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Harlow E., Whyte P., Franza B. R.Jr Schley C. 1986; Association of adenovirus early-region 1A proteins with cellular polypeptides. Molecular and Cellular Biology 6:1579–1589
    [Google Scholar]
  18. Houweling A., van den Elsen P. J., van der Eb A. J. 1980; Partial transformation of primary rat cells by the leftmost 4·5 % fragment of adenovirus 5 DNA. Virology 105:537–550
    [Google Scholar]
  19. Inostroza J. A., Mermelstein F. H., Ha I., Lane W. S., Reinberg D. 1992; Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489
    [Google Scholar]
  20. Jelinek T., Pereira D. S., Graham F. L. 1994; Tumorigenicity of adenovirus-transformed rodent cells is influenced by at least two regions of adenovirus type 12 early region 1A. Journal of Virology 68:888–896
    [Google Scholar]
  21. Jochemsen H., Daniëls G. S. G., Hertoghs J. J. L., Schrier P. I., van den Elsen P. J., van der Eb A. J. 1982; Identification of adenovirus- type 12 gene products involved in transformation and oncogenesis. Virology 122:15–28
    [Google Scholar]
  22. Jones N., Shenk T. 1979; An adenovirus type 5 early gene function regulates expression of other early genes. Proceedings of the National Academy of Sciences, USA 76:3665–3669
    [Google Scholar]
  23. Lee W. S., Kao C. C., Bryant G. O., Liu X., Berk A. J. 1991; Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67:365–376
    [Google Scholar]
  24. Lewis B. A., Tullis G., Seto E., Horikoshi N., Weinmann R., Shenk T. 1995; Adenovirus E1A proteins interact with the cellular YY1 transcription factor. Journal of Virology 69:1628–1636
    [Google Scholar]
  25. Lillie J. W., Green M. R. 1989; Transcription activation by the adenovirus E1A protein. Nature 338:39–44
    [Google Scholar]
  26. Liu F., Green M. R. 1990; A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1A protein. Cell 61:1217–1224
    [Google Scholar]
  27. Liu F., Green M. R. 1994; Promoter targeting by adenovirus E1A through interaction with different cellular DNA-binding domains. Nature 368:520–525
    [Google Scholar]
  28. Lundblad J. R., Kwok R. P. S., Laurance M. E., Harter M. L., Goodman R. H. 1995; Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374:85–88
    [Google Scholar]
  29. Ma J., Ptashne M. 1987; A new class of yeast transcriptional activators. Cell 51:113–119
    [Google Scholar]
  30. Miller M. E., Engel D. A., Smith M. M. 1995; Cyclic is required for function of the N-terminal and CR1 domains of adenovirus E1A in Saccharomyces cerevisiae. Oncogene 11:1623–1630
    [Google Scholar]
  31. Moran E. 1993; DNA tumor virus transforming proteins and the cell cycle. Current Opinion in Genetics & Development 3:63–70
    [Google Scholar]
  32. Murphy M., Opalka B., Sajaczkowski R., Schulte-Holthausen H. 1987; Definition of a region required for transformation in E1A of adenovirus 12. Virology 159:49–56
    [Google Scholar]
  33. Nevins J. R. 1981; Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26:213–220
    [Google Scholar]
  34. Pereira D. S., Rosenthal K. L., Graham F. L. 1995; Identification of adenovirus E1A regions which affect MHC class I expression and susceptibility to cytotoxic T lymphocytes. Virology 211:268–277
    [Google Scholar]
  35. Rochette-Egly C., Fromental C., Chambon P. 1990; General repression of enhanson activity by the adenovirus-2 E1A proteins. Genes & Development 4:137–150
    [Google Scholar]
  36. Ruley H. E. 1983; Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606
    [Google Scholar]
  37. Shenk T., Flint J. 1991; Transcriptional and transforming activities of the adenovirus E1A proteins. Advances in Cancer Research 57:47–83
    [Google Scholar]
  38. Simon M. C., Fisch T. M., Benecke B. J., Nevins J. B., Heintz N. 1988; Identification of multiple, functionally distinct TATA elements,one of which is the target in the hsp70 promoter for E1A regulation. Cell 52:723–729
    [Google Scholar]
  39. Swaminathan S., Thimmapaya B. 1995; Regulation of adenovirus E2 transcription unit. Current Topics in Microbiology and Immunology 199/III:177–194
    [Google Scholar]
  40. Tjian R., Maniatis T. 1994; Transcriptional activaton: a complex puzzle with few pieces. Cell 77:5–8
    [Google Scholar]
  41. Van Ormondt H., Galibert F. 1984; Nucleotide sequences of adenovirus DNAs. Current Topics in Microbiology and Immunology 110:73–143
    [Google Scholar]
  42. Wang H. -G. H., Rikitake Y., Carter M. C., Yaciuk P., Abraham S. E., Zerler B., Moran E. 1993a; Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. Journal of Virology 67:476–488
    [Google Scholar]
  43. Wang H. -G. H., Yaciuk P., Ricciardi R. P., Green M., Yokoyama K., Moran E. 1993b; The E1A products of oncogenic adenovirus serotype 12 include amino-terminally modified forms able to bind the retinoblastoma protein but not p300. Journal of Virology 67:4804–4813
    [Google Scholar]
  44. Weinberg R. A. 1996; E2F and cell proliferation: a world turned upside down. Cell 85:457–459
    [Google Scholar]
  45. Williams J., Williams M., Liu C., Telling G. 1995; Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Current Topics in Microbiology and Immunology 199/III:149–175
    [Google Scholar]
  46. Wu L., Rosser D. S. E., Schmidt M. C., Berk A. 1987; A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature 326:512–515
    [Google Scholar]
  47. Yee S. -P., Branton P. E. 1985; Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147:142–153
    [Google Scholar]
  48. Zerler B., Moran B., Maruyama K., Moomaw J., Grodzicker T., Ruley H. E. 1986; Adenovirus E1A coding sequences which enables ras and pmt oncogenes to transform cultured primary cells. Molecular and Cellular Biology 6:887–899
    [Google Scholar]
  49. Zhou Q., Engel D. A. 1995; Adenovirus E1A243 disrupts the ATF/CREB-YY1 complex at the mouse c-fos promoter. Journal of Virology 69:7402–7409
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-2-413
Loading
/content/journal/jgv/10.1099/0022-1317-78-2-413
Loading

Data & Media loading...

Most cited Most Cited RSS feed