1887

Abstract

E6 and E7 oncoproteins of human papillomavirus (HPV) play significant roles in the pathogenesis of cervical cancer. However, the pattern of E6/E7 expression during the productive virus life cycle in differentiating epithelia of the uterine cervix remains unclear. In addition, little is known about the cellular factors regulating E6/E7 expression in differentiating epithelia. In the present study, using transient expression assays and DNA binding assays, we demonstrated that E6/E7 transcription is critically regulated by the cellular factor API, a Jun/Fos heterodimer complex. Immunohistochemical analyses of various uterine cervical lesions showed API expression in lower cell layers of normal cervix and low-grade cervical intraepithelial neoplasia (CIN), while it was detected throughout all layers in high-grade CIN and invasive cancer. RNA-RNA hybridization analyses of organotypic raft culture specimens of an HPV-31-containing cell line revealed that E6/E7 transcripts were expressed in most cell layers, with reduced expression in differentiated cells. This pattern of HPV expression correlated with the pattern of API expression detected by immunohistochemical analyses. These findings suggest that E6/E7 expression in differentiating epithelia is dependent on AP1, which appears to be associated with proliferative activity of the cells. Since E6/E7 expression induces cell proliferation, co-expression of AP1 and E6/E7 in undifferentiated cell layers might create a positive regulatory loop, probably contributing to maintenance of initial HPV infection and subsequent activation in basal and suprabasal cell layers.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-2-401
1997-02-01
2022-08-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/2/9018063.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-2-401&mimeType=html&fmt=ahah

References

  1. Baker C. C., Phelps W. C., Lindgren V., Braun M. J., Gonda M. A., Howley P. M. 1987; Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. Journal of Virology 61:962–971
    [Google Scholar]
  2. Bedell M. A., Hudson J. B., Golub T. D., Turyk M. E., Hosken M., Wilbanks G. D., Laimins L. A. 1991; Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. Journal of Virology 65:2254–2260
    [Google Scholar]
  3. Broker T. R., Chow L. T., Chin M. T., Dong G. R., Wolinsky S. M., Whitback A., Stoler M. H. 1989; A molecular portrait of human papillomavirus carcinogenesis. Cancer Cells 7:197–208
    [Google Scholar]
  4. Butz K., Hoppe-Seyler F. 1993; Transcriptional control of human papillomavirus (HPV) oncogene expression: composition of the HPV type 18 upstream regulatory region. Journal of Virology 67:6476–6486
    [Google Scholar]
  5. Chan W. K., Chong T., Bernard H. U., Klock G. 1990; Transcription of the transforming genes of the oncogenic human papillomavirus type-16 is stimulated by tumor promoters through AP1 binding sites. Nucleic Acids Research 18:763–769
    [Google Scholar]
  6. Chong T., Apt D., Gloss B., Isa M., Bernard H. U. 1991; The enhancer of human papillomavirus type 16 : binding sites for the ubiquitous transcriptional factors Oct-1, NFA, TEF-2, NF1 and AP1 participate in epithelial cell-specific transcription. Journal of Virology 65:5933–5943
    [Google Scholar]
  7. Choo C. K., Rorke E. A., Eckert R. L. 1994; Differentiation- independent constitutive expression of the human papillomavirus type 16 E6 and E7 oncogenes in the CaSki cervical tumour cell line. Journal of General Virology 75:1139–1147
    [Google Scholar]
  8. Chow L. T., Hirochika H., Nasseri M., Stoler M. H., Wolinsky S. M., Chin M. T., Hirochika R., Arvan D. S., Broker T. R. 1987; Human papillomavirus gene expression. Cancer Cells 5:55–72
    [Google Scholar]
  9. Crum C. P., Nuovo G., Friedman D., Silverstain S. J. 1988; Accumulation of RNA homologues to human papillomavirus type 16 open reading frames in genital precancers. Journal of Virology 62:84–90
    [Google Scholar]
  10. de Groot R. P., Kruyt F. A. E., van der Saag P. T., Kruijer W. 1990; Ectopic expression of c-jun leads to differentiation of p19 embryonal carcinoma cells. EMBO Journal 9:1831–1837
    [Google Scholar]
  11. Frattini M. G., Lim H. B., Laimins L. A. 1996; In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proceedings of the National Academy of Sciences, USA 93:3062–3067
    [Google Scholar]
  12. Gloss B., Bernard H. U., Seedorf K., Klock G. 1987; The upstream regulatory region of the human papillomavirus type 16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO Journal 6:3735–3743
    [Google Scholar]
  13. Higgins G. D., Uzelin D. M., Phillips G. E., McEvoy P., Marin R., Burrell C. J. 1992; Transcriptional patterns of human papillomavirus type 16 in genital intraepithelial neoplasia : evidence for promoter usage within the E7 open reading frame during epithelial differentiation. Journal of General Virology 73:2047–2057
    [Google Scholar]
  14. Higuchi R. 1990; Recombinant PCR. In PCR Protocols: A Guide to Methods and Applications pp. 177–183 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  15. Hirai S., Bourachot B., Yaniv M. 1990; Both Jun and Fos contribute to transcription activation by the heterodimer. Oncogene 5:39–46
    [Google Scholar]
  16. Hummel M., Hudson J. B., Laimins L. A. 1992; Differentiation- induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. Journal of Virology 66:6070–6080
    [Google Scholar]
  17. Ishiji T., Lace M. J., Parkkinen S., Anderson R. D., Haugen T. H., Cripe T. P., Xiao J. H., Chambon P., Turek L. P. 1992; Transcriptional enhancer factor (TEF-1) and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO Journal 11:2271–2281
    [Google Scholar]
  18. Jonat C., Rahmsdorf H. J., Parl K. K., Cato A. C. B., Gebel S., Ponta H., Herrlich P. 1990; Antitumor promotion and antiinflammation: down-regulation of AP1 (Fos/Jun) activity by glucocorticoid hormones. Cell 62:1189–1204
    [Google Scholar]
  19. Kyo S., Tam A., Laimins L. A. 1995; Transcriptional activity of human papillomavirus type 31b enhancer is regulated through synergistic interaction of AP1 with two novel cellular factors. Virology 211:184–197
    [Google Scholar]
  20. Laimins L. A. 1993; The biology of human papillomaviruses : from warts to cancer. Infectious Agents and Diseases 2:74–86
    [Google Scholar]
  21. McCance D., KoPan R., Fuchs E., Laimins L. A. 1988; Human papillomavirus type 16 alters human epithelial cell differentiation in vivo. Proceedings of the National Academy of Sciences, USA 85:7169–7173
    [Google Scholar]
  22. Mack D. H., Laimins L. A. 1991; A keratinocyte-specific transcription factor, KRF-1, interacts with AP1 to activate expression of human papillomavirus type 18 in squamous epithelial cells. Proceedings of the National Academy of Sciences, USA 88:9102–9106
    [Google Scholar]
  23. Myer C., Frattini M. G., Hudson J. B., Laimins L. A. 1992; Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257:971–973
    [Google Scholar]
  24. Offord E. A., Chappuis P. O., Beard P. 1993; Different stability of AP1 proteins in human keratinocytes and fibroblast cells : possible role in the cell-type specific expression of human papillomavirus type 18 genes. Carcinogenesis 1:2447–2455
    [Google Scholar]
  25. Pray T. R., Laimins L. A. 1995; Differentiation-dependent expression of E1 Λ E4 protein in cell lines maintaining episomes of human papillomavirus type 31b. Virology 206:670–685
    [Google Scholar]
  26. Scheffner M., Werness B. A., Huibregste J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus type 16 and 18 promotes the degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  27. Schreiber E., Matthias P., Muller M. M., Schaffner W. 1989; Rapid detection of octamer binding proteins with mini-extract prepared from a small number of cells. Nucleic Acids Research 17:6419
    [Google Scholar]
  28. Schule R., Rangarajan P., Kliewer S., Ransone L. J., Bolado J., Yang N., Verma I. M., Evans R. M. 1990; Functional antagonism between oncoprotein c-jun and the glucocorticoid receptor. Cell 62:1217–1226
    [Google Scholar]
  29. Schwartz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  30. Stoler M. H., Wolinsky S., Whitbeck A., Broker T. R., Chow L. T. 1989; Differentiation-linked human papillomavirus type 6 and 11 transcription in genital condylomata revealed by in situ hybridization with messenger-specific RNA probes. Virology 172:331–349
    [Google Scholar]
  31. Ustav M., Stenlund A. 1991; Transient replication ofBPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO Journal 10:449–457
    [Google Scholar]
  32. Welter J. F., Eckert R. L. 1996; Differential expression of the fos and jun family members c-fos, fosB, Fra-1, Fra-2, c-jun, junB and junD during human epidermal keratinocyte differentiation. Oncogene 11:2681–2687
    [Google Scholar]
  33. Werness B. A., Levine A. J., Howley P. M. 1990; Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79
    [Google Scholar]
  34. Wilkinson D. G., Bhatt S., Ryseck R. P., Bravo R. 1989; Tissue- specific expression of c-jun and junB during organogenesis in the mouse. Development 106:465–471
    [Google Scholar]
  35. Yutsudo M., Okamoto Y., Hakura A. 1988; Functional dissociation of transforming genes of human papillomavirus type 16. Virology 166:594–597
    [Google Scholar]
  36. zur Hausen H. 1989; Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Research 49:4677–4681
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-2-401
Loading
/content/journal/jgv/10.1099/0022-1317-78-2-401
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error